首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 266 毫秒
1.
We present a non-overlapping spatial domain decomposition method for the solution of linear–quadratic parabolic optimal control problems. The spatial domain is decomposed into non-overlapping subdomains. The original parabolic optimal control problem is decomposed into smaller problems posed on space–time cylinder subdomains with auxiliary state and adjoint variables imposed as Dirichlet boundary conditions on the space–time interface boundary. The subdomain problems are coupled through Robin transmission conditions. This leads to a Schur complement equation in which the unknowns are the auxiliary state adjoint variables on the space-time interface boundary. The Schur complement operator is the sum of space–time subdomain Schur complement operators. The application of these subdomain Schur complement operators is equivalent to the solution of an subdomain parabolic optimal control problem. The subdomain Schur complement operators are shown to be invertible and the application of their inverses is equivalent to the solution of a related subdomain parabolic optimal control problem. We introduce a new family of Neumann–Neumann type preconditioners for the Schur complement system including several different coarse grid corrections. We compare the numerical performance of our preconditioners with an alternative approach recently introduced by Benamou.  相似文献   

2.
This paper deals with a control-constrained linear-quadratic optimal control problem governed by the Stokes equations. It is concerned with situations where the gradient of the velocity field is not bounded. The control is discretized by piecewise constant functions. The state and the adjoint state are discretized by finite element schemes that are not necessarily conforming. The approximate control is constructed as projection of the discrete adjoint velocity in the set of admissible controls. It is proved that under certain assumptions on the discretization of state and adjoint state this approximation is of order 2 in L 2(Ω). As first example a prismatic domain with a reentrant edge is considered where the impact of the edge singularity is counteracted by anisotropic mesh grading and where the state and the adjoint state are approximated in the lower order Crouzeix-Raviart finite element space. The second example concerns a nonconvex, plane domain, where the corner singularity is treated by isotropic mesh grading and state and adjoint state can be approximated by a couple of standard element pairs.  相似文献   

3.
The optimal control of unsteady Burgers equation without constraints and with control constraints are solved using the high-level modelling and simulation package COMSOL Multiphysics. Using the first-order optimality conditions, projection and semi-smooth Newton methods are applied for solving the optimality system. The optimality system is solved numerically using the classical iterative approach by integrating the state equation forward in time and the adjoint equation backward in time using the gradient method and considering the optimality system in the space-time cylinder as an elliptic equation and solving it adaptively. The equivalence of the optimality system to the elliptic partial differential equation (PDE) is shown by transforming the Burgers equation by the Cole-Hopf transformation to a linear diffusion type equation. Numerical results obtained with adaptive and nonadaptive elliptic solvers of COMSOL Multiphysics are presented both for the unconstrained and the control constrained case.  相似文献   

4.
In this paper, an optimal control problem for the stationary Navier-Stokes equations in the presence of state constraints is investigated. Existence of optimal solutions is proved and first order necessary conditions are derived. The regularity of the adjoint state and the state constraint multiplier is also studied. Lipschitz stability of the optimal control, state and adjoint variables with respect to perturbations is proved and a second order sufficient optimality condition for the case of pointwise state constraints is stated.  相似文献   

5.
In this paper, we study the numerical methods for optimal control problems governed by elliptic PDEs with pointwise observations of the state. The first order optimality conditions as well as regularities of the solutions are derived. The optimal control and adjoint state have low regularities due to the pointwise observations. For the finite dimensional approximation, we use the standard conforming piecewise linear finite elements to approximate the state and adjoint state variables, whereas variational discretization is applied to the discretization of the control. A priori and a posteriori error estimates for the optimal control, the state and adjoint state are obtained. Numerical experiments are also provided to confirm our theoretical results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
A family of ELLAM (Eulerian–Lagrangian localized adjoint method) schemes is developed and analyzed for linear advection-diffusion-reaction transport partial differential equations with any combination of inflow and outflow Dirichlet, Neumann, or flux boundary conditions. The formulation uses space-time finite elements, with edges oriented along Lagrangian flow paths, in a time–stepping procedure, where space-time test functions are chosen to satisfy a local adjoint condition. This allows Eulerian–Lagrangian concepts to be applied in a systematic mass-conservative manner, yielding numerical schemes defined at each discrete time level. Optimal-order error estimates and superconvergence results are derived. Numerical experiments are performed to verify the theoretical estimates. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14: 739–780, 1998  相似文献   

7.
We consider a quadratic optimal control problem governed by a nonautonomous affine ordinary differential equation subject to nonnegativity control constraints. For a general class of interior penalty functions, we provide a first order expansion for the penalized states and adjoint states around the state and adjoint state of the original problem. Our main argument relies on the following fact: if the optimal control satisfies strict complementarity conditions for its Hamiltonian except for a set of times with null Lebesgue measure, the functional estimates for the penalized optimal control problem can be derived from the estimates of a related finite dimensional problem. Our results provide several types of efficiency measures of the penalization technique: error estimates of the control for L s norms (s in [1, +∞]), error estimates of the state and the adjoint state in Sobolev spaces W 1,s (s in [1, +∞)) and also error estimates for the value function. For the L 1 norm and the logarithmic penalty, the sharpest results are given, by establishing an error estimate for the penalized control of order ${O(\varepsilon|\log\epsilon|)}$ where ${\varepsilon >0 }$ is the (small) penalty parameter.  相似文献   

8.
《Optimization》2012,61(2):101-112
For optimal control problems of nonlinear evolution equations of first order we derive regularity properties for the corresponding adjoint states where the proof is based on the necessary optimal conditions and smoothness properites of the optimal states. These results are used for the characterization of the optimal solution and the corresponding adjoint state of the periodic three-dimensionel NAVIER-STOKES system.  相似文献   

9.
This article deals with a stochastic control problem for certain fluids of non-Newtonian type. More precisely, the state equation is given by the two-dimensional stochastic second grade fluids perturbed by a multiplicative white noise. The control acts through an external stochastic force and we search for a control that minimizes a cost functional. We show that the Gâteaux derivative of the control to state map is a stochastic process being the unique solution of the stochastic linearized state equation. The well-posedness of the corresponding stochastic backward adjoint equation is also established, allowing to derive the first order optimality condition.  相似文献   

10.
We study the superconvergence property of fully discrete finite element approximation for quadratic optimal control problems governed by semilinear parabolic equations with control constraints. The time discretization is based on difference methods, whereas the space discretization is done using finite element methods. The state and the adjoint state are approximated by piecewise linear functions and the control is approximated by piecewise constant functions. First, we define a fully discrete finite element approximation scheme for the semilinear parabolic control problem. Second, we derive the superconvergence properties for the control, the state and the adjoint state. Finally, we do some numerical experiments for illustrating our theoretical results.  相似文献   

11.
In this paper we consider a model elliptic optimal control problem with finitely many state constraints in two and three dimensions. Such problems are challenging due to low regularity of the adjoint variable. For the discretization of the problem we consider continuous linear elements on quasi-uniform and graded meshes separately. Our main result establishes optimal a priori error estimates for the state, adjoint, and the Lagrange multiplier on the two types of meshes. In particular, in three dimensions the optimal second order convergence rate for all three variables is possible only on properly refined meshes. Numerical examples at the end of the paper support our theoretical results.  相似文献   

12.
This paper is concerned with the analysis of a control problem related to the optimal management of a bioreactor. This real-world problem is formulated as a state-control constrained optimal control problem. We analyze the state system (a complex system of partial differential equations modelling the eutrophication processes for non-smooth velocities), and we prove that the control problem admits, at least, a solution. Finally, we present a detailed derivation of a first order optimality condition - involving a suitable adjoint system - in order to characterize these optimal solutions, and some computational results.  相似文献   

13.
The purpose of this paper is to establish the first and second order necessary conditions for stochastic optimal controls in infinite dimensions. The control system is governed by a stochastic evolution equation, in which both drift and diffusion terms may contain the control variable and the set of controls is allowed to be nonconvex. Only one adjoint equation is introduced to derive the first order necessary optimality condition either by means of the classical variational analysis approach or, under an additional assumption, by using differential calculus of set-valued maps. More importantly, in order to avoid the essential difficulty with the well-posedness of higher order adjoint equations, using again the classical variational analysis approach, only the first and the second order adjoint equations are needed to formulate the second order necessary optimality condition, in which the solutions to the second order adjoint equation are understood in the sense of the relaxed transposition.  相似文献   

14.
We study the time-dependent heat equation on its space-time domain that is discretised by a $k$-spacetree. $k$-spacetrees are a generalisation of the octree concept and are a discretisation paradigm yielding a multiscale representation of dynamically adaptive Cartesian grids with low memory footprint. The paper presents a full approximation storage geometric multigrid implementation for this setting that combines the smoothing properties of multigrid for the equation's elliptic operator with a multiscale solution propagation in time. While the runtime and memory overhead for tackling the all-in-one space-time problem is bounded, the holistic approach promises to exhibit a better parallel scalability than classical time stepping, adaptive dynamic refinement in space and time fall naturally into place, as well as the treatment of periodic boundary conditions of steady cycle systems, on-time computational steering is eased as the algorithm delivers guesses for the solution's long-term behaviour immediately, and, finally, backward problems arising from the adjoint equation benefit from the the solution being available for any point in space and time.  相似文献   

15.
A numerical method for minimizing the resource consumption for linear dynamical systems is proposed. It is based on forming a finite-time control that steers the linear system from an arbitrary initial state to the desired terminal state in a given fixed time; this control gives an approximate solution of the problem. It is shown that the structure of the finite-time control makes it possible to determine the structure of the resource-optimal control. A method for determining an initial approximation is described, and an iterative algorithm for calculating the optimal control is proposed. A system of linear algebraic equations relating the deviations of the initial conditions in the adjoint system to the deviations of the phase coordinates from the prescribed terminal state at the terminal point in time is obtained. A computational algorithm is described. The radius of local convergence is found and the quadratic rate of convergence is established. It is proved that the computational procedure and the sequence of controls converge to the resource-optimal control.  相似文献   

16.
Laurenz Göllmann  Daniela Kern  Helmut Maurer 《PAMM》2007,7(1):1151701-1151702
We consider retarded optimal control problems with constant delays in state and control variables under mixed controlstate inequality constraints. First order necessary optimality conditions in the form of Pontryagin's minimum principle are presented and discussed as well as numerical methods based upon discretization techniques and nonlinear programming. The minimum principle for the considered problem class leads to a boundary value problem which is retarded in the state dynamics and advanced in the costate dynamics. It can be shown that the Lagrange multipliers associated with the programming problem provide a consistent discretization of the advanced adjoint equation for the delayed control problem. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
In this paper we present a state theory for a class of linear functional differential equations of the retarded type considered by Delfour and Mitter (J. Differential Equations, 18 1975, 18–28) with initial functions in the product space Mp = X × Lp(?b, 0; X). Roughly speaking, the state at time t is a piece of trajectory defined over an interval [t ? b, t] for a fixed b > 0. From a study of the properties of the state in Mp an operational differential equation, the so-called state equation, is derived in order to describe its evolution. An adjoint state equation is also introduced for the adjoint state and the connection between solutions of the hereditary adjoint system and those of the adjoint state equation is established. All this provides the appropriate framework for the solution and the numerical approximation of the associated linear-quadratic optimal control and filtering problems.  相似文献   

18.
In this paper, we investigate the superconvergence property and a posteriori error estimates of mixed finite element methods for a linear elliptic control problem with an integral constraint. The state and co-state are approximated by the order k = 1 Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions. Approximations of the optimal control of the continuous optimal control problem will be constructed by a projection of the discrete adjoint state. It is proved that these approximations have convergence order h 2. Moreover, we derive a posteriori error estimates both for the control variable and the state variables. Finally, a numerical example is given to demonstrate the theoretical results.  相似文献   

19.
Mariano Mateos  Arnd Rösch 《PAMM》2007,7(1):1060505-1060506
A Neumann boundary control problem for a linear-quadratic elliptic optimal control problem in a polygonal domain is investigated. The main goal is to show an optimal approximation order for discretized problems after a postprocessing process. It turns out that two saturation processes occur: The regularity of the boundary data of the adjoint state is limited if the largest angle of the polygon is at least 2π /3. Moreover, piecewise linear finite elements cannot guarantee the optimal order, if the largest angle of the polygon is greater than π /2. We will derive error estimates of order hσ with σ ∈ [3/2, 2] depending on the largest angle and properties of the finite elements. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
Turnpike properties have been established long time ago in finite-dimensional optimal control problems arising in econometry. They refer to the fact that, under quite general assumptions, the optimal solutions of a given optimal control problem settled in large time consist approximately of three pieces, the first and the last of which being transient short-time arcs, and the middle piece being a long-time arc staying exponentially close to the optimal steady-state solution of an associated static optimal control problem. We provide in this paper a general version of a turnpike theorem, valuable for nonlinear dynamics without any specific assumption, and for very general terminal conditions. Not only the optimal trajectory is shown to remain exponentially close to a steady-state, but also the corresponding adjoint vector of the Pontryagin maximum principle. The exponential closedness is quantified with the use of appropriate normal forms of Riccati equations. We show then how the property on the adjoint vector can be adequately used in order to initialize successfully a numerical direct method, or a shooting method. In particular, we provide an appropriate variant of the usual shooting method in which we initialize the adjoint vector, not at the initial time, but at the middle of the trajectory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号