首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
高兴华  李宏  刘洋 《计算数学》2021,43(4):493-505
本文考虑了分布阶时间分数阶扩散波动方程,其中时间分数阶导数是在Caputo意义上定义的,其阶次$\alpha,\beta$分别属于(0,1)和(1,2).文中提出了在计算上行之有效的数值方法来模拟分布阶时间分数阶扩散波动方程.在时间上,通过中点求积公式把分布阶项转换为多项的时间分数阶导数项,并且利用$L1$和$L2$公式来近似Caputo分数阶导数;空间上使用Galerkin有限元方法进行离散.给出了基于$H^1$范数的有限元解的稳定性和误差估计的详细证明,最后的数值算例结果说明了理论分析的正确性以及有效性.  相似文献   

2.
本文研究了时间分布阶波方程的全离散有限元数值逼近及其高精度误差分析的新途径.首先,基于L1公式离散Caputo时间分数阶导数,构造了时间分布阶波方程的有限元全离散格式,证明了格式的无条件稳定性.然后,利用双线性元的Ritz投影算子R_h和插值算子I_h之间的高精度误差估计,再借助于插值后处理技术得到了在全离散格式下单独利用插值或投影所无法得到的超逼近和超收敛结果.进一步地,将该方法应用于变系数分布阶波方程,也证明了格式的无条件稳定性和超收敛性.最后,对一些常见的单元作了进一步探讨.  相似文献   

3.
同时考虑了Kudryashov方法和Khalil一致分数阶变换,构造了求解一致分数阶非线性微分方程精确解的新方法,并将其用于求解时间-空间一致分数阶Whitham-Boroer-Kaup方程,得到了Whitham-Boroer-Kaup方程新的精确解,验证了该方法的有效性和可行性.  相似文献   

4.
构造具有广义边界条件的四阶线性抛物型方程的混合间断时空有限元格式,利用混合有限元方法将高阶方程降阶,利用空间连续而时间允许间断的时空有限元方法离散方程,证明了离散解的存在唯一性,稳定性和收敛性,并给出数值算例验证了方法的有效性.  相似文献   

5.
讨论了基于Caputo导数的Miller-Ross序列导数的分数阶微分方程的稳定性.根据Laplace变换,得到分数阶微分方程的解;应用Mittag-Leffler函数的渐近展开,讨论了方程的稳定性.分两部分:齐次方程与非齐次方程.  相似文献   

6.
构造四阶抛物型积分-微分方程的混合间断时空有限元格式,利用混合有限元方法将高阶方程降阶,利用空间连续而时间允许间断的时空有限元方法离散方程,证明离散解的稳定性,存在唯一性和收敛性.  相似文献   

7.
本文研究了带有初始奇异性的多项时间分数阶扩散方程的一种全离散数值方法.首先,基于L1公式在渐变网格下离散多项Caputo时间分数阶导数,构造了多项时间分数阶扩散方程的时间半离散格式,证明了时间格式通过选取合适的网格参数r,时间方向的误差可以达到最优的收敛阶2-α_1,其中α_1(0 α_11)为多项时间分数阶导数阶数的最大值.然后,空间采用谱方法进行离散,得到了全离散格式,证明了全离散格式的无条件稳定性和收敛性.为了降低计算量和储存量,对多项时间分数阶扩散方程又构造了时间方向的快速算法,同时证明了该格式的收敛性.数值算例验证了算法的有效性,显示了快速算法的高效性.  相似文献   

8.
基于L1离散格式,针对具有Caputo导数的二维多项时间分数阶扩散方程给出了类Wilson非协调有限元方法.首先证明其逼近格式的无条件稳定性.其次利用该单元的特殊性质和分数阶导数巧妙的处理技巧导出了超逼近结果,进一步地,借助插值后处理技术导出了超收敛估计.  相似文献   

9.
一类四阶抛物型积分-微分方程的混合间断时空有限元法   总被引:1,自引:1,他引:1  
李宏  刘洋 《计算数学》2007,29(4):413-420
构造四阶抛物型积分-微分方程的混合间断时空有限元格式,利用混合有限元方法将高阶方程降阶,利用空间连续而时间允许间断的时空有限元方法离散方程,证明离散解的稳定性,存在唯一性和收敛性.  相似文献   

10.
离散不等式,特别是离散的Gronwall不等式已被广泛应用于差分方程的研究.近年来,分数阶微分方程引起很多学者的关注.因此,利用一种新的分数阶和分的定义和不等式的方法,讨论一类更一般的离散分数阶Gronwall不等式.  相似文献   

11.
This paper gives the detailed numerical analysis of mixed finite element method for fractional Navier-Stokes equations.The proposed method is based on the mixed finite element method in space and a finite difference scheme in time.The stability analyses of semi-discretization scheme and fully discrete scheme are discussed in detail.Furthermore,We give the convergence analysis for both semidiscrete and flly discrete schemes and then prove that the numerical solution converges the exact one with order O(h2+k),where h and k:respectively denote the space step size and the time step size.Finally,numerical examples are presented to demonstrate the effectiveness of our numerical methods.  相似文献   

12.
New numerical techniques are presented for the solution of the two-dimensional time fractional evolution equation in the unit square. In these methods, Galerkin finite element is used for the spatial discretization, and, for the time stepping, new alternating direction implicit (ADI) method based on the backward Euler method combined with the first order convolution quadrature approximating the integral term are considered. The ADI Galerkin finite element method is proved to be convergent in time and in the $L^2$ norm in space. The convergence order is$\mathcal{O}$($k$|ln $k$|+$h^r$), where $k$ is the temporal grid size and $h$ is spatial grid size in the $x$ and $y$ directions, respectively. Numerical results are presented to support our theoretical analysis.  相似文献   

13.
This paper focuses on the finite element method for Caputo-type parabolic equation with spectral fractional Laplacian, where the time derivative is in the sense of Caputo with order in (0,1) and the spatial derivative is the spectral fractional Laplacian. The time discretization is based on the Hadamard finite-part integral (or the finite-part integral in the sense of Hadamard), where the piecewise linear interpolation polynomials are used. The spatial fractional Laplacian is lifted to the local spacial derivative by using the Caffarelli–Silvestre extension, where the finite element method is used. Full-discretization scheme is constructed. The convergence and error estimates are obtained. Finally, numerical experiments are presented which support the theoretical results.  相似文献   

14.
In this article, we consider the finite element method (FEM) for two‐dimensional linear time‐fractional Tricomi‐type equations, which is obtained from the standard two‐dimensional linear Tricomi‐type equation by replacing the first‐order time derivative with a fractional derivative (of order α, with 1 <α< 2 ). The method is based on finite element method for space and finite difference method for time. We prove that the method is unconditionally stable, and the error estimate is presented. The comparison of the FEM results with the exact solutions is made, and numerical experiments reveal that the FEM is very effective. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

15.
In this article, an implicit fully discrete local discontinuous Galerkin (LDG) finite element method, on the basis of finite difference method in time and LDG method in space, is applied to solve the time‐fractional Kawahara equation, which is introduced by replacing the integer‐order time derivatives with fractional derivatives. We prove that our scheme is unconditional stable and convergent through analysis. Extensive numerical results are provided to demonstrate the performance of the present method. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

16.
In this article, an $H^1$-Galerkin mixed finite element (MFE) method for solving the time fractional water wave model is presented. First-order backward Euler difference method and $L1$ formula are applied to approximate integer derivative and Caputo fractional derivative with order $1/2$, respectively, and $H^1$-Galerkin mixed finite element method is used to approximate the spatial direction. The analysis of stability for fully discrete mixed finite element scheme is made and the optimal space-time orders of convergence for two unknown variables in both $H^1$-norm and $L^2$-norm are derived. Further, some computing results for a priori analysis and numerical figures based on four changed parameters in the studied problem are given to illustrate the effectiveness of the current method  相似文献   

17.
This article presents a finite element scheme with Newton's method for solving the time‐fractional nonlinear diffusion equation. For time discretization, we use the fractional Crank–Nicolson scheme based on backward Euler convolution quadrature. We discuss the existence‐uniqueness results for the fully discrete problem. A new discrete fractional Gronwall type inequality for the backward Euler convolution quadrature is established. A priori error estimate for the fully discrete problem in L2(Ω) norm is derived. Numerical results based on finite element scheme are provided to validate theoretical estimates on time‐fractional nonlinear Fisher equation and Huxley equation.  相似文献   

18.
In this work, an effective and fast finite element numerical method with high-order accuracy is discussed for solving a nonlinear time fractional diffusion equation. A two-level linearized finite element scheme is constructed and a temporal–spatial error splitting argument is established to split the error into two parts, that is, the temporal error and the spatial error. Based on the regularity of the time discrete system, the temporal error estimate is derived. Using the property of the Ritz projection operator, the spatial error is deduced. Unconditional superclose result in H1-norm is obtained, with no additional regularity assumption about the exact solution of the problem considered. Then the global superconvergence error estimate is obtained through the interpolated postprocessing technique. In order to reduce storage and computation time, a fast finite element method evaluation scheme for solving the nonlinear time fractional diffusion equation is developed. To confirm the theoretical error analysis, some numerical results are provided.  相似文献   

19.
In this paper, finite element method with high-order approximation for time fractional derivative is considered and discussed to find the numerical solution of time fractional convection-diffusion equation. Some lemmas are introduced and proved, further the stability and error estimates are discussed and analyzed, respectively. The convergence result $O(h^{r+1}+\tau^{3-\alpha})$ can be derived, which illustrates that time convergence rate is higher than the order $(2-\alpha)$ derived by $L1$-approximation. Finally, to validate our theoretical results, some computing data are provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号