首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Let $W: = \exp \left( { - Q} \right)$ , where $Q$ is of smooth polynomial growth at $\infty$ , for example $Q\left( x \right) = \left| x \right|^\beta ,\beta >1$ . We call $W^2 $ a Freud weight. Let $\left\{ {x_{j{\kern 1pt} n} } \right\}_{j = 1}^n $ and $\left\{ {\lambda _{j{\kern 1pt} n} } \right\}_{j = 1}^n $ denote respectively the zeros of the $n$ th orthonormal polynomial $p_n$ for $W^2 $ and the Christoffel numbers of order $n$ . We establish converse quadrature sum inequalities associated with W, such as $$\left\| {\left( {PW} \right)\left( x \right)\left( {1 + \left| x \right|} \right)^r } \right\|_{L_p \left( R \right)} $$ with $C$ independent of $n$ and polynomials P of degree $ < n$ , and suitable restrictions on $r$ , $R$ . We concentrate on the case ${ \geqq 4}$ , as the case ${p < 4}$ was handled earlier. We are able to treat a general class of Freud weights, whereas our earlier treatment dealt essentially with $\left( { - \left| x \right|^\beta } \right),\beta = 2,4,6,....$ Some applications to Lagrange interpolation are presented.  相似文献   

2.
3.
Let and be polynomials orthogonal on the unit circle with respect to the measures dσ and dμ, respectively. In this paper we consider the question how the orthogonality measures dσ and dμ are related to each other if the orthogonal polynomials are connected by a relation of the form , for , where . It turns out that the two measures are related by if , where and are known trigonometric polynomials of fixed degree and where the 's are the zeros of on . If the 's and 's are uniformly bounded then (under some additional conditions) much more can be said. Indeed, in this case the measures dσ and dμ have to be of the form and , respectively, where are nonnegative trigonometric polynomials. Finally, the question is considered to which weight functions polynomials of the form where denotes the reciprocal polynomial of , can be orthogonal. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Let α > 0. We consider the linear span $\mathfrak{X}_\alpha \left( {\mathbb{R}^n } \right)$ of scalar Riesz's kernels $\left\{ {\tfrac{1}{{\left| {x - a} \right|^\alpha }}} \right\}_{a \in \mathbb{R}^n }$ and the linear span $\mathfrak{Y}_\alpha \left( {\mathbb{R}^n } \right)$ of vector Riesz's kernels $\left\{ {\tfrac{1}{{\left| {x - a} \right|^{\alpha + 1} }}\left( {x - a} \right)} \right\}_{a \in \mathbb{R}^n }$ . We study the following problems. (1) When is the intersection $\mathfrak{X}_\alpha \left( {\mathbb{R}^n } \right) \cap L^p \left( {\mathbb{R}^n } \right)$ dense in Lp(?n)? (2) When is the intersection $\mathfrak{Y}_\alpha \left( {\mathbb{R}^n } \right) \cap L^p \left( {\mathbb{R}^n ,\mathbb{R}^n } \right)$ dense in Lp(?n, ?n)? Bibliography: 15 titles.  相似文献   

5.
We introduce the concepts of an annihilator and a relative annihilator of a given subset of a BCK-algebra $\mathcal{A}$ . We prove that annihilators of deductive systems of BCK-algebras are again deductive systems and moreover pseudocomplements in the lattice ${\mathcal{D}\left( \mathcal{A} \right)}$ of all deductive systems on $\mathcal{A}$ . Moreover, relative annihilators of ${C \in \mathcal{D}\left( \mathcal{A} \right)}$ with respect to ${B\;{\text{in}}\;\mathcal{D}\left( \mathcal{A} \right)}$ are introduced and serve as relative pseudocomplements of C w.r.t. B in ${\mathcal{D}\left( \mathcal{A} \right)}$ .  相似文献   

6.
In this paper we obtain the strong asymptotics for the sequence of orthogonal polynomials with respect to the inner product $\left\langle {f,g} \right\rangle s = \sum\limits_{k - 0}^m {\int\limits_{\Delta _k } {f^{\left( k \right)} \left( x \right)g^{\left( k \right)} \left( x \right)d\mu \kappa } } \left( x \right)$ where $\left\{ {\mu _\kappa } \right\}_{k = 0}^m ,m \in \mathbb{Z}_ + $ , are measures supported on [?1,1] which satisfy Szegö's condition.  相似文献   

7.
Pekarskii  A. A. 《Mathematical Notes》2004,76(1-2):200-208
Let C[-1,1] be the Banach space of continuous complex functions $f$ on the interval [-1,1] equipped with the standard maximum norm $\left\| f \right\|$ ; let $\omega \left( \cdot \right) = \omega \left( { \cdot ,f} \right)$ be the modulus of continuity of $f$ ; and let $R_n = R_n \left( f \right)$ be the best uniform approximation of $f$ by rational functions (r.f.) whose degrees do not exceed $n = 1, 2, \ldots $ . The space C[-1,1] is also regarded as a pre-Hilbert space with respect to the inner product given by $\left( {f,g} \right) = \left( {1/\pi } \right)\int_{ - 1}^1 {f\left( x \right)g\left( x \right)} \left( {1 - x^2 } \right)^{ - 1/2} dx$ . Let $z_n = \{ z_1 , z_2 , \ldots z_n \} $ be a set of points located outside the interval [-1,1]. By $F\left( { \cdot ,f,z_n } \right)$ we denote an orthoprojection operator acting from the pre-Hilbert space C[-1,1] onto its ( ${n + 1}$ )-dimensional subspace consisting of rational functions whose poles (with multiplicity taken into account) can only be points of the set $z_n $ . In this paper, we show that if $f$ is not a rational function of degree $ \leqslant n$ , then we can find a set of points $z_n = z_n \left( f \right)$ such that $\left\| {f\left( \cdot \right) - F\left( { \cdot ,f,z_n } \right)} \right\| \leqslant 12R_n ln\frac{3}{{\omega ^{ - 1} \left( {R_n /3} \right)}}.$   相似文献   

8.
Let $I^d $ be the d‐dimensional cube, $I^d = [0,1]^d $ , and let $F \ni f \mapsto Sf \in L_\infty (I^d ) $ be a linear operator acting on the Sobolev space F, where Fis either $$$$ or $$$$ where $$\left\| f \right\|_F = \sum\limits_{\left| m \right| = r} {\mathop {{\text{esssup}}}\limits_{x \in I^d } \left| {\frac{{\partial f^{\left| m \right|} }} {{\partial x_1^{m_1 } \partial x_2^{m_2 } \cdot \cdot \cdot \partial x_d^{m_d } }}(x)} \right|.} $$ We assume that the problem elements fsatisfy the condition $\sum\nolimits_{\left| m \right| = r} {{\text{esssup}}} _{x \in I^d } \left| {f^{(m)} (x)} \right| \leqslant 1 $ and that Sis continuous with respect to the supremum norm. We study sensitivity of optimal recovery of Sfrom inexact samples of ftaken at npoints forming a uniform grid on $I^d $ . We assume that the inaccuracy in reading the sample vector is measured in the pth norm and bounded by a nonnegative number δ. The sensitivity is defined by the difference between the optimal errors corresponding to the exact and perturbed readings, respectively. Our main result is that this difference is bounded by $\mathcal{A}\delta $ , where $\mathcal{A} $ is a positive constant independent of the number of samples. This indicates that the curse of dimension, which badly affects the optimal errors, does not extend to sensitivity.  相似文献   

9.
Let $A^{(l)} (l = 1, \ldots ,k)$ be $n \times n$ nonnegative matrices with right and left Perron vectors $u^{(l)} $ and $v^{(l)} $ , respectively, and let $D^{(l)} $ and $E^{(l)} (l = 1, \ldots ,k)$ be positive-definite diagonal matrices of the same order. Extending known results, under the assumption that $$u^{(1)} \circ v^{(1)} = \ldots = u^{(k)} \circ v^{(k)} \ne 0$$ (where `` $ \circ $ '' denotes the componentwise, i.e., the Hadamard product of vectors) but without requiring that the matrices $A^{(l)} $ be irreducible, for the Perron root of the sum $\sum\nolimits_{l = 1}^k {D^{(l)} A^{(l)} E^{(l)} } $ we derive a lower bound of the form $$\rho \left( {\sum\limits_{l = 1}^k {D^{(l)} A^{(l)} E^{(l)} } } \right) \geqslant \sum\limits_{l = 1}^k {\beta _{l\rho } (A^{(l)} ),{\text{ }}\beta _l >0.} $$ Also we prove that, for arbitrary irreducible nonnegative matrices $A^{{\text{ (}}l{\text{)}}} (l = 1, \ldots ,k),$ , $$\rho \left( {\sum\limits_{l = 1}^k {A^{(l)} } } \right) \geqslant \sum\limits_{l = 1}^k {\alpha _{l\rho } (A^{(l)} ),} $$ where the coefficients ∝1>0 are specified using an arbitrarily chosen normalized positive vector. The cases of equality in both estimates are analyzed, and some other related results are established. Bibliography: 8 titles.  相似文献   

10.
Let $f(x,y,x,w) = x^2 + y^2 + z^2 + Dw^2$ , where $D >1$ is an integer such that $D \ne d^2$ and ${{\sqrt n } \mathord{\left/ {\vphantom {{\sqrt n } {\sqrt D = n^\theta , 0 < \theta < {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}}} \right. \kern-0em} {\sqrt D = n^\theta , 0 < \theta < {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0em} 2}}}$ . Let $rf(n)$ be the number of representations of n by f. It is proved that $r_f (n) = \pi ^2 \frac{n}{{\sqrt D }}\sigma _f (n) + O\left( {\frac{{n^{1 + \varepsilon - c(\theta )} }}{{\sqrt D }}} \right),$ where $\sigma _f (n)$ is the singular series, $c(\theta ) >0$ , and ε is an arbitrarily small positive constant. Bibliography: 14 titles.  相似文献   

11.
In this paper we deal with local estimates for parabolic problems in ${\mathbb{R}^N}$ with absorbing first order terms, whose model is $$\left\{\begin{array}{l@{\quad}l}u_t- \Delta u +u |\nabla u|^q = f(t,x) \quad &{\rm in}\, (0,T) \times \mathbb{R}^N\,,\\u(0,x)= u_0 (x) &{\rm in}\, \mathbb{R}^N \,,\quad\end{array}\right.$$ where ${T >0 , \, N\geq 2,\, 1 < q \leq 2,\, f(t,x)\in L^1\left( 0,T; L^1_{\rm loc} \left(\mathbb{R}^N\right)\right)}$ and ${u_0\in L^1_{\rm loc}\left(\mathbb{R}^{N}\right)}$ .  相似文献   

12.
13.
Let 0≤g be a dyadic Hölder continuous function with period 1 and g(0)=1, and let $G(x) = \prod\nolimits_{n = 0}^\infty {g(x/{\text{2}}^n )} $ . In this article we investigate the asymptotic behavior of $\smallint _0^{\rm T} \left| {G(x)} \right|^q dx$ and $\frac{1}{n}\sum\nolimits_{k = 0}^n {\log g(2^k x)} $ using the dynamical system techniques: the pressure function and the variational principle. An algorithm to calculate the pressure is presented. The results are applied to study the regulatiry of wavelets and Bernoulli convolutions.  相似文献   

14.
We consider the scalar homogeneous equation $S(x) = \int_0^\infty {K(x - t)S(t)dt,{\text{ }}x \in \mathbb{R}^ + \equiv (0,\infty ),}$ with symmetric kernel $K:K( - x) = K(x),{\text{ }}x \in \mathbb{R}_1$ satisfying the conditions $0 \leqslant K \in L_1 (\mathbb{R}^ + ) \cap C^{\left( 2 \right)} (\mathbb{R}^ + )$ , $\int_0^\infty {K(t)dt > \frac{1}{2}} $ , $K' \leqslant 0{\text{ }}and 0 \leqslant K'' \downarrow {\text{ }}on \mathbb{R}^ + $ . We prove the existence of a real solution S of the equation given above with asymptotic behavior $S(x) = O(x){\text{ as }}x \to + \infty $ .  相似文献   

15.
Galkina  S. Yu. 《Mathematical Notes》2001,70(5-6):733-743
In this paper, we study the behavior of the Fourier--Haar coefficients $a_{m_1 , \ldots ,m_n } \left( f \right)$ of functions $f$ Lebesgue integrable on the $n$ -dimensional cube $D_n = \left[ {0,1} \right]^n $ and having a bounded Vitali variation $V_{D_n } f$ on it. It is proved that $$\sum\limits_{m_1 = 2}^\infty \cdots \sum\limits_{m_n = 2}^\infty {\left| {a_{m_1 , \ldots ,m_n } \left( f \right)} \right|} \leqslant \left( {\frac{{2 + \sqrt 2 }}{3}} \right)^n {\text{ }}.{\text{ }}V_{D_n } f$$ and shown that this estimate holds for some function of bounded finite nonzero Vitali variation.  相似文献   

16.
Christian Delhommé 《Order》2006,23(2-3):221-233
We observe that, given a poset ${\left( {E,{\user1{\mathcal{R}}}} \right)}$ and a finite covering ${\user1{\mathcal{R}}} = {\user1{\mathcal{R}}}_{1} \cup \cdots \cup {\user1{\mathcal{R}}}_{n} $ of its ordering, the height of the poset does not exceed the natural product of the heights of the corresponding sub-relations: $$\mathfrak{h}{\left( {E,{\user1{\mathcal{R}}}} \right)} \leqslant \mathfrak{h}{\left( {E,{\user1{\mathcal{R}}}_{1} } \right)} \otimes \cdots \otimes \mathfrak{h}{\left( {E,{\user1{\mathcal{R}}}_{n} } \right)}.$$ Conversely for every finite sequence $(\xi_1,\cdots,\xi_n)$ of ordinals, every poset ${\left( {E,{\user1{\mathcal{R}}}} \right)}$ of height at most $\xi_1\otimes\cdots\otimes\xi_n$ admits a partition ${\left( {{\user1{\mathcal{R}}}_{1} , \cdots ,{\user1{\mathcal{R}}}_{n} } \right)}$ of its ordering ${\user1{\mathcal{R}}}$ such that each ${\left( {E,{\user1{\mathcal{R}}}_{k} } \right)}$ has height at most $\xi_k$ . In particular for every finite sequence $(\xi_1,\cdots,\xi_n)$ of ordinals, the ordinal $$\xi _{1} \underline{ \otimes } \cdots \underline{ \otimes } \xi _{n} : = \sup {\left\{ {{\left( {\xi ^{\prime }_{1} \otimes \cdots \otimes \xi ^{\prime }_{n} } \right)} + 1:\xi ^{\prime }_{1} < \xi _{1} , \cdots ,\xi ^{\prime }_{n} < \xi _{n} } \right\}}$$ is the least $\xi$ for which the following partition relation holds $$\mathfrak{H}_{\xi } \to {\left( {\mathfrak{H}_{{\xi _{1} }} , \cdots ,\mathfrak{H}_{{\xi _{n} }} } \right)}^{2} $$ meaning: for every poset ${\left( {A,{\user1{\mathcal{R}}}} \right)}$ of height at least $\xi$ and every finite covering ${\left( {{\user1{\mathcal{R}}}_{1} , \cdots ,{\user1{\mathcal{R}}}_{n} } \right)}$ of its ordering ${\user1{\mathcal{R}}}$ , there is a $k$ for which the relation ${\left( {A,{\user1{\mathcal{R}}}_{k} } \right)}$ has height at least $\xi_k$ . The proof will rely on analogue properties of vertex coverings w.r.t. the natural sum.  相似文献   

17.
Introduce the notation: $\mathbb{Z}$ is the set of integers, $\bar {\mathbb{Z}}={\mathbb{Z}} \cup \{-\infty, +\infty\},{\mathbb{R}}_+^2 =\{x=(x_1,x_2) \in {\mathbb{R}}^2; x_1>0,x_2>0\}$ , $g_{k,m} (x,\alpha,h)= \int\limits_0^1 {g_1 (\frac{(k+u)h_1 - x_1}{\alpha_1})g_2(\frac{(m+u)h_2 - x_2}{\alpha_2})}du$ , where $g_i :\mathbb{R} \to \mathbb{R},x \in \mathbb{R}^2 ,\alpha ,h \in \mathbb{R}_ + ^2 $ . Under certain conditions on the functions g 1, g 2, we prove that the system of functions $g_{k,m} (x,\alpha^(n), h^(n)) (k,m \in \bar {\mathbb{Z}})$ , where $\alpha ^{\left( n \right)} ,h^{\left( n \right)} \in \mathbb{R}_ + ^2 $ are arbitrary infinitesimal sequences, is complete in the space C $\mathbb{R}^2 $ of uniformly continuous bounded functions f equipped with the norm $||f|| = \mathop {\sup }\limits_{x \in \mathbb{R}^2 } |f(x)|$ . Starting with the functions g k,m , it is possible to construct a method for uniform approximating in $\mathbb{R}^2 $ any continuous function of bounded variation in the sense of Hardy. An error estimate is derived in terms of the second order moduli of continuity. Based on the obtained results, we discuss in detail the accuracy of uniform approximation of functions of several variables by linear functions. The error estimates are derived by using second order moduli of continuity. We pay a particular attention to sharpness of constants. Bibliography: 8 titles.  相似文献   

18.
Let $h(t,x): = p.v. \sum\limits_{n \in Z\backslash \left| 0 \right|} {\frac{{e^{\pi i(tn^2 + 2xn)} }}{{2\pi in}}} = \mathop {\lim }\limits_{N \to \infty } \sum\limits_{0< \left| n \right| \leqslant N} {\frac{{e^{\pi i(tn^2 + 2xn)} }}{{2\pi in}}} $ ( $(i = \sqrt { - 1;} t,x$ -real variables). It is proved that in the rectangle $D: = \left\{ {(t,x):0< t< 1,\left| x \right| \leqslant \frac{1}{2}} \right\}$ , the function h satisfies the followingfunctional inequality: $\left| {h(t,x)} \right| \leqslant \sqrt t \left| {h\left( {\frac{1}{t},\frac{x}{t}} \right)} \right| + c,$ where c is an absolute positive constant. Iterations of this relation provide another, more elementary, proof of the known global boundedness result $\left\| {h; L^\infty (E^2 )} \right\| : = ess sup \left| {h(t,x)} \right|< \infty .$ The above functional inequality is derived from a general duality relation, of theta-function type, for solutions of the Cauchy initial value problem for Schrödinger equation of a free particle. Variation and complexity of solutions of Schrödinger equation are discussed.  相似文献   

19.
Let KL 1(?) and let fL (?) be two functions on ?. The convolution $$ \left( {K*F} \right)\left( x \right) = \int_\mathbb{R} {K\left( {x - y} \right)f\left( y \right)dy} $$ can be considered as an average of f with weight defined by K. Wiener’s Tauberian theorem says that under suitable conditions, if $$ \mathop {\lim }\limits_{x \to \infty } \left( {K*F} \right)\left( x \right) = \mathop {\lim }\limits_{x \to \infty } \int_\mathbb{R} {\left( {K*A} \right)\left( x \right)} $$ for some constant A, then $$ \mathop {\lim }\limits_{x \to \infty } f\left( x \right) = A $$ We prove the following ?-adic analogue of this theorem: Suppose K, F, G are perverse ?-adic sheaves on the affine line $ \mathbb{A} $ over an algebraically closed field of characteristic p (p ≠ ?). Under suitable conditions, if $ \left( {K*F} \right)|_{\eta _\infty } \cong \left( {K*G} \right)|_{\eta _\infty } $ , then $ F|_{\eta _\infty } \cong G|_{\eta _\infty } $ , where η is the spectrum of the local field of $ \mathbb{A} $ at .  相似文献   

20.
In this paper we study integral operators of the form $$T\,f\left( x \right) = \int {k_1 \left( {x - a_1 y} \right)k_2 \left( {x - a_2 y} \right)...k_m \left( {x - a_m y} \right)f\left( y \right)dy} ,$$ $$k_i \left( y \right) = \sum\limits_{j \in Z} {2^{\frac{{jn}}{{q_i }}} } \varphi _{i,j} \left( {2^j y} \right),\,1 \leqq q_i < \infty ,\frac{1}{{q_1 }} + \frac{1}{{q_2 }} + ... + \frac{1}{{q_m }} = 1 - r,$$ $0 \leqq r < 1$ , and $\varphi _{i,j}$ satisfying suitable regularity conditions. We obtain the boundedness of $T:L^p \left( {R^n } \right) \to T:L^q \left( {R^n } \right)$ for $1 < p < \frac{1}{r}$ and $\frac{1}{q} = \frac{1}{p} - r$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号