首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 297 毫秒
1.
We consider the Dirichlet and Robin boundary value problems for the Helmholtz equation in a non‐locally perturbed half‐plane, modelling time harmonic acoustic scattering of an incident field by, respectively, sound‐soft and impedance infinite rough surfaces.Recently proposed novel boundary integral equation formulations of these problems are discussed. It is usual in practical computations to truncate the infinite rough surface, solving a boundary integral equation on a finite section of the boundary, of length 2A, say. In the case of surfaces of small amplitude and slope we prove the stability and convergence as A→∞ of this approximation procedure. For surfaces of arbitrarily large amplitude and/or surface slope we prove stability and convergence of a modified finite section procedure in which the truncated boundary is ‘flattened’ in finite neighbourhoods of its two endpoints. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
This paper is concerned with the direct and inverse problem of scattering of a time‐harmonic wave by a Lipschitz diffraction grating of mixed type. The scattering problem is modeled by the mixed boundary value problem for the Helmholtz equation in the unbounded half‐plane domain above a periodic Lipschitz surface on which a mixed Dirichlet and impedance boundary condition is imposed. We first establish the well‐posedness of the direct problem, employing the variational method, and then extend Isakov's method to prove uniqueness in determining the Lipschitz diffraction grating profile by using point sources lying above the structure. Finally, we develop a periodic version of the linear sampling method to reconstruct the diffraction grating. In this case, the far field equation defined on the unit circle is replaced by a near field equation defined on a line above the surface, which is a linear integral equation of the first kind. Numerical results are also presented to illustrate the efficiency of the method in the case when the height of the unknown grating profile is not very large and the noise level of the near field measurements is not very high. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
The paper deals with the three‐dimensional Dirichlet boundary value problem (BVP) for a second‐order strongly elliptic self‐adjoint system of partial differential equations in the divergence form with variable coefficients and develops the integral potential method based on a localized parametrix. Using Green's representation formula and properties of the localized layer and volume potentials, we reduce the Dirichlet BVP to a system of localized boundary‐domain integral equations. The equivalence between the Dirichlet BVP and the corresponding localized boundary‐domain integral equation system is studied. We establish that the obtained localized boundary‐domain integral operator belongs to the Boutet de Monvel algebra. With the help of the Wiener–Hopf factorization method, we investigate corresponding Fredholm properties and prove invertibility of the localized operator in appropriate Sobolev (Bessel potential) spaces. Copyright © 2016 The Authors Mathematical Methods in the Applied Sciences Published by John Wiley & Sons, Ltd.  相似文献   

4.
In this article, a semi‐analytical method for solving the Laplace problems with circular boundaries using the null‐field integral equation is proposed. The main gain of using the degenerate kernels is to avoid calculating the principal values. To fully utilize the geometry of circular boundary, degenerate kernels for the fundamental solution and Fourier series for boundary densities are incorporated into the null‐field integral equation. An adaptive observer system is considered to fully employ the property of degenerate kernels in the polar coordinates. A linear algebraic system is obtained without boundary discretization. By matching the boundary condition, the unknown coefficients can be determined. The present method can be seen as one kind of semianalytical approaches since error only attributes to the truncated Fourier series. For the eccentric case, vector decomposition technique for the normal and tangential directions is carefully considered in implementing the hypersingular equation in mathematical essence although we transform it to summability to divergent series. The five advantages, well‐posed linear algebraic system, principal value free, elimination of boundary‐layer effect, exponential convergence, and mesh free, are achieved. Several examples involving infinite, half‐plane, and bounded domains with circular boundaries are given to demonstrate the validity of the proposed method. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

5.
We consider control problems for the 2-D Helmholtz equation in an unbounded domain with partially coated boundary. Dirichlet boundary condition is given on one part of the boundary and the impedance boundary condition is imposed on another its part. The role of control in control problem under study is played by boundary impedance. Quadratic tracking–type functionals for the field play the role of cost functionals. Solvability of control problems is proved. The uniqueness and stability of optimal solutions with respect to certain perturbations of both cost functional and incident field are established.  相似文献   

6.
We consider the scattering of time‐harmonic acoustic plane waves by a crack buried in a piecewise homogeneous medium. The integral representation for a solution is obtained in the form of potentials by using Green's formula. The density in potentials satisfies the uniquely solvable Fredholm integral equation. Then we obtain the existence and uniqueness of the solution. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
A customary, heuristic, method, by which the Poisson integral formula for the Dirichlet problem, for the half space, for Laplace's equation is obtained, involves Green's function, and Kelvin's method of images. Although this heuristic method leads one to guess the correct result, this Poisson formula still has to be verified directly, independently of the method by which it was arrived at, in order to be absolutely certain that a solution of the Dirichlet problem for the half space, for Laplace's equation, has been actually obtained. A similar heuristic method, as seems to be generally known, could be followed in solving the Dirichlet problem, for the half space, for the equation where is a real constant. However, in Part 1, a different, labor-saving, method is used to study Dirichlet problems for the equation. This method is essentially based on what Hadamard called the method of descent. Indeed, it is shown that he who has solved the half space Dirichlet problem for Laplace's equation has already solved the half space Dirichlet problem for the equation In Part 2, the solution formula for the quarter space Dirichlet problem for Laplace's equation is obtained from the Poisson integral formula for the half space Dirichlet problem for Laplace's equation. A representation theorem for harmonic functions in the quarter space is deduced. The method of descent is used, in Part 3, to obtain the solution formula for the quarter space Dirichlet problem for the equation by means of the solution formula for the quarter space Dirichlet problem for Laplace's equation. So that, indeed, it is also shown that he who has solved the quarter space Dirichlet problem for Laplace's equation has already solved the quarter space Dirichlet problem for the " equation" For the sake of completeness and clarity, and for the convenience of the reader, the appendix, at the end of Part 3, contains a detailed proof that the Poisson integral formula solves the half space Dirichlet problem for Laplace's equation. The Bibliography for Parts 1,2, 3 is to be found at the end of Part 1.  相似文献   

8.
In this paper, we consider an initial‐boundary value problem for a parabolic equation with nonlinear boundary conditions. The solution to the problem can be expressed as a convolution integral of a Green's function and two unknown functions. We change the problem to a system of two nonlinear Volterra integral equations of convolution type. By using an explicit procedure on the basis of Sinc‐function properties, the resulting integral equations are replaced by a system of nonlinear algebraic equations, whose solution yields an accurate approximate solution to the parabolic problem. Some examples are considered to illustrate the ability of the proposed method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Ch. Zhang  A. Savaidis 《PAMM》2002,1(1):205-206
Analysis of elastic wave propagation in anisotropic solids with cracks is of particular interest to quantitative non‐destructive testing and fracture mechanics. For this purpose, a novel time‐domain boundary integral equation method (BIEM) is presented in this paper. A finite crack in an unbounded elastic solid of general anisotropy subjected to transient elastic wave loading is considered. Two‐dimensional plane strain or plane stress condition is assumed. The initial‐boundary value problem is formulated as a set of hypersingular time‐domain traction boundary integral equations (BIEs) with the crack‐opening‐displacements (CODs) as unknown quantities. A time‐stepping scheme is developed for solving the hypersingular time‐domain BIEs. The scheme uses the convolution quadrature formula of Lubich [1] for temporal convolution and a Galerkin method for spatial discretization of the BIEs. An important feature of the present time‐domain BIEM is that it uses the Laplace‐domain instead of the more complicated time‐domain Green's functions. Fourier integral representations of Laplace‐domain Green's functions are applied. No special technique is needed in the present time‐domain BIEM for evaluating hypersingular integrals.  相似文献   

10.
利用复变函数方法和积分方程理论研究了既含有圆形孔口又含有水平裂纹的无限大平面的平面弹性问题,将复杂的解析函数的边值问题化成了求解只在裂纹上的奇异积分方程的问题.此外,还给出了裂纹尖端附近的应力场和应力强度因子的公式.  相似文献   

11.
R. Chapko 《PAMM》2002,1(1):424-425
We consider initial boundary value problems for the homogeneous differential equation of hyperbolic or parabolic type in the unbounded two‐ or three‐dimensional spatial domain with the homogeneous initial conditions and with Dirichlet or Neumann boundary condition. The numerical solution is realized in two steps. At first using the Laguerre transformation or Rothe's method with respect to the time variable the non‐stationary problem is reduced to the sequence of boundary value problems for the non‐homogeneous Helmholtz equation. Further we construct the special integral representation for solutions and obtain the sequence of boundary integral equations (without volume integrals). For the full‐discretization of integral equations we propose some projection methods.  相似文献   

12.
A matrix Wiener–Hopf equation connected with a new canonical diffraction problem is solved explicitly. We consider the diffraction of a plane electromagnetic wave by an impedance loaded parallel plate waveguide formed by a two‐part impedance plane and a parallel perfectly conducting half‐plane. The representation of the solution to the boundary‐value problem in terms of Fourier integrals leads to a matrix Wiener–Hopf equation. The exact solution is obtained in terms of two infinite sets of unknown coefficients satisfying two infinite systems of linear algebraic equations. These systems are solved numerically and the influence of the parameters such as the waveguide spacing and the surface impedances of the two‐part plane on the diffraction phenomenon is shown graphically. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, the unique solvability, Fredholm property, and the principle of limiting absorption are proved for a boundary value problem for the system of Maxwell's equations in a semi‐infinite rectangular cylinder coupled with a layer by an aperture of arbitrary shape. Conditions at infinity are taken in the form of the Sveshnikov–Werner partial radiation conditions. The method of solution employs Green's functions of the partial domains and reduction to vector pseudodifferential equations considered in appropriate vectorial Sobolev spaces. Singularities of Green's functions are separated both in the domain and on its boundary. The smoothness of solutions is established. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
The paper is devoted to initial boundary value problems for transport equations with non‐divergence‐free external field. The crucial role is played by integration along characteristics and associated Green's formula for which we provide a new proof which generalizes and clarifies previous versions. The paper concludes with an application of general theory to the Spencer–Lewis equation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
In this work, we investigate a boundary problem with non‐local conditions for mixed parabolic–hyperbolic‐type equation with three lines of type changing with Caputo fractional derivative in the parabolic part. We equivalently reduce considered problem to the system of second kind Volterra integral equations. In the parabolic part, we use solution of the first boundary problem with appropriate Green's function, and in hyperbolic parts, we use corresponding solutions of the Cauchy problem. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Both exterior and interior mixed Dirichlet-Neumann problems in R3 for the scalar Helmholtz equation are solved via boundary integral equations. The integral equations are equivalent to the original problem in the sense that the traces of the weak seolution satisfy the integral equations, and, conversely, the solution of the integral equations inserted into Green's formula yields the solution of the mixed boundary value problem. The calculus of pseudodifferential operators is used to prove existence and regularity of the solution of the integral equations. The regularity results — obtained via Wiener-Hopf technique — show the explicit “edge” behavior of the solution near the submanifold which separates the Dirichlet boundary from the Neumann boundary.  相似文献   

17.
The two‐dimensional scattering problem for time‐harmonic plane waves in an isotropic elastic medium and an effectively infinite periodic surface is considered. A radiation condition for quasi‐periodic solutions similar to the condition utilized in the scattering of acoustic waves by one‐dimensional diffraction gratings is proposed. Under this condition, uniqueness of solution to the first and third boundary‐value problems is established. We then proceed by introducing a quasi‐periodic free field matrix of fundamental solutions for the Navier equation. The solution to the first boundary‐value problem is sought as a superposition of single‐ and double‐layer potentials defined utilizing this quasi‐periodic matrix. Existence of solution is established by showing the equivalence of the problem to a uniquely solvable second kind Fredholm integral equation. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

18.
We consider the scattering of an electromagnetic time‐harmonic plane wave by an infinite cylinder having a mixed open crack (or arc) in R2 as the cross section. The crack is made up of two parts, and one of the two parts is (possibly) coated by a material with surface impedance λ. We transform the scattering problem into a system of boundary integral equations by adopting a potential approach, and establish the existence and uniqueness of a weak solution to the system by the Fredholm theory. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
By means of the integral version of vortex equation, the technique of Green's function, and the vorticity‐to‐velocity map, a new kind of interval methods for solving the initial‐periodic boundary value problem of two‐dimensional incompressible Navier–Stokes equation is introduced, which consists of both an approximate scheme and a set of pointwise intervals covering the exact solution. The convergence theorem corresponding to the scheme is proved, and the order of error width for the two‐sided bounds is also considered. Finally, a simple numerical example illustrates our corroboration. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1368–1396, 2014  相似文献   

20.
This paper is concerned with the mathematical analysis of the solution for the wave propagation from the scattering by an unbounded penetrable rough surface. Throughout, the wavenumber is assumed to have a nonzero imaginary part that accounts for the energy absorption. The scattering problem is modeled as a boundary value problem governed by the Helmholtz equation with transparent boundary conditions proposed on plane surfaces confining the scattering surface. The existence and uniqueness of the weak solution for the model problem are established by using a variational approach. Furthermore, the scattering problem is investigated for the case when the scattering profile is a sufficiently small and smooth deformation of a plane surface. Under this assumption, the problem is equivalently formulated into a set of two‐point boundary value problems in the frequency domain, and the analytical solution, in the form of an infinite series, is deduced by using a boundary perturbation technique combined with the transformed field expansion approach. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号