首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider the two‐dimensional elasticity problem for an elastic body with a crack under unilateral constraints imposed at the crack. We assume that both the Signorini condition for non‐penetration of the crack faces and the condition of given friction between them are fulfilled. The problem is non‐linear and can be described by a variational inequality. Varying the shape of the crack by a local coordinate transformation of the domain, the first derivative of the energy functional to the problem with respect to the crack length is obtained, which gives the criterion for the crack growing. The regularity of the solution is discussed and the singular solution is performed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
Here the numerical simulation of some plane Lamé problem with a rectilinear crack under non‐penetration condition is presented. The corresponding solids are assumed to be isotropic and homogeneous as well as bonded. The non‐linear crack problem is formulated as a variational inequality. We use penalty iteration and the finite‐element method to calculate numerically its approximate solution. Applying analytic formulas obtained from shape sensitivity analysis, we calculate then energetic and stress characteristics of the solution, and describe the quasistatic propagation of the crack under linear loading. The results are presented in comparison with the classical, linear crack problem, when interpenetration between the crack faces may occur. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
In the paper we consider elliptic boundary problems in domains having cuts (cracks). The non-penetration condition of inequality type is prescribed at the crack faces. A dependence of the derivative of the energy functional with respect to variations of crack shape is investigated. This shape derivative can be associated with the crack propagation criterion in the elasticity theory. We analyze an optimization problem of finding the crack shape which provides a minimum of the energy functional derivative with respect to a perturbation parameter and prove a solution existence to this problem.  相似文献   

4.
The linear model equations of elasticity often give rise to oscillatory solutions in some vicinity of interface crack fronts. In this paper we apply the Wiener–Hopf method which yields the asymptotic behaviour of the elastic fields and, in addition, criteria to prevent oscillatory solutions. The exponents of the asymptotic expansions are found as eigenvalues of the symbol of corresponding boundary pseudodifferential equations. The method works for three‐dimensional anisotropic bodies and we demonstrate it for the example of two anisotropic bodies, one of which is bounded and the other one is its exterior complement. The common boundary is a smooth surface. On one part of this surface, called the interface, the bodies are bonded, while on the complementary part there is a crack. By applying the potential method, the problem is reduced to an equivalent system of Boundary Pseudodifferential Equations (BPE) on the interface with the stress vector as the unknown. The BPEs are defined via Poincaré–Steklov operators. We prove the unique solvability of these BPEs and obtain the full asymptotic expansion of the solution near the crack front. As a special case we consider the interface crack between two different isotropic materials and derive an explicit criterion which prevents oscillatory solutions. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
We consider an elastic solid incorporating a mode-III crack in which the crack faces incorporate the effects of surface elasticity and are further subjected to prescribed non-uniform surface tractions. The surface elasticity is modelled using the continuum-based model of Gurtin and Murdoch. Using complex variable techniques, the corresponding problem is reduced to the solution of a first order Cauchy singular integro-differential equation which, in turn, leads to the complete solution of the aforementioned crack problem valid everywhere in the domain of interest (including at the crack tip). Finally, we note that, as a particular case of our analysis, the classical decomposition of a mode-III crack problem in linear elasticity continues to hold even in the presence of surface elasticity.  相似文献   

6.
Using variational-asymptotic models of force and energy criteria, situations are found in which bifurcations of the form of the front accompanying the quasistatic propagation of a plane crack in an elastic isotropic space are possible. Two types of bifurcations are revealed for a circular crack in the case of axisymmetric loading: fluctuation of the centre of the crack while preserving its circular form and distortion of the front due to the formation of two or a larger number of “lobes”.  相似文献   

7.
导出了点群6-维六方准晶反平面弹性问题的控制方程.利用复变方法,给出了点群6-维六方准晶在周期平面内的反平面弹性问题的应力分量以及边界条件的复变表示,通过引入适当的保角变换,研究了点群6-维六方准晶中带有椭圆孔口与半无限裂纹的反平面弹性问题,得到了椭圆孔口问题应力场的解析解,给出了半无限裂纹问题在裂纹尖端处的应力强度因子的解析解.在极限情形下,椭圆孔口转化为Griffith裂纹,并得到该裂纹在裂尖处的应力强度因子的解析解.当点群6-维六方准晶体的对称性增加时,其椭圆孔口与半无限裂纹的反平面弹性问题的解退化为点群6mm-维六方准晶带有椭圆孔口与半无限裂纹的反平面弹性问题的解。  相似文献   

8.
The plane problem in the linear theory of elasticity for a body with a rigid inclusion located within it is investigated. It is assumed that there is a crack on part of the boundary joining the inclusion and the matrix and complete bonding on the remaining part of the boundary. Zero displacements are specified on the outer boundary of the body. The crack surface is free from forces and the stress state in the body is determined by the bulk forces acting on it. The variation in the energy functional in the case of a variation in the rigid inclusion and the crack is investigated. The deviation of the solution of the perturbed problem from the solution of the initial problem is estimated. An expression is obtained for the derivative of the energy functional with respect to a zone perturbation parameter that depends on the solution of the initial problem and the form of the vector function defining the perturbation. Examples of the application of the results obtained are studied.  相似文献   

9.
在线性非局部弹性理论中,具有均匀常应力边界的裂纹混合边界值问题的解是不存在的.本文从非局部场论的基本理论出发针对这一问题进行了研究.内容包括:对非局部能量守恒定律的客观性的考察,非局部热弹性体本构方程的推导,非局部体力的确定以及线性化理论,得到了一些新结果.其中,在线性化理论中所推出的应力边界条件不仅解决了本摘要开头所提到的问题,而且自然地包括了Barenblatt裂纹尖端的分子内聚力模型.  相似文献   

10.
The solution u to the Laplace equation in the neighborhood of a vertex in a three‐dimensional domain may be described by an asymptotic series in terms of spherical coordinates $$u = \sum\nolimits_i {A_i}{\rho ^{{\nu _i}}}{f_i}(\theta ,\phi )$$ . For conical vertices, we derive explicit analytical expressions for the eigenpairs νi and fi(θ, φ), which are required as benchmark solutions for the verification of numerical methods. Thereafter, we extend the modified Steklov eigen‐formulation for the computation of vertex eigenpairs using p/spectral finite element methods and demonstrate its accuracy and high efficiency by comparing the numerically computed eigenpairs to the analytical ones. Vertices at the intersection of a crack front and a free surface are also considered and numerical eigenpairs are provided. The numerical examples demonstrate the efficiency, robustness, and high accuracy of the proposed method, hence its potential extension to elasticity problems. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

11.
求解平片裂纹问题的有限部积分与边界元法   总被引:1,自引:0,他引:1       下载免费PDF全文
本文利用位移的Somigliana公式和有限部积分的概念,导出了求解三维弹性力学中的任意形状平片裂纹问题的超奇异积分方程组,进而联合使用有限部积分法与边界元法对所得方程建立了数值法.为验证本文的方法,计算了若干数值例子的裂纹面的位移间断及裂纹前沿的应力强度因子,它们与理论值相比符合很好.  相似文献   

12.
《Applied Mathematical Modelling》2014,38(15-16):3897-3916
The third-order shear deformable plate theory is applied in this work to calculate the stresses and energy release rates in delaminated orthotropic composite plates with straight crack front. The delaminated parts are modeled by the general third-order plate theory, while a double-plate model with interface constraint is developed for the uncracked portion of the plate. The governing equations of the uncracked part are formulated by considering the equilibrium and the displacement continuity along the interface. As an example, a simply-supported delaminated orthotropic plate subjected to a point force is solved adopting Lévy plate formulation and the state-space approach. The mode-II and mode-III energy release rate distributions along the crack front were calculated by the J-integral. To verify the analytical results the 3D finite element model of the plate was constructed and the energy release rates were calculated by the virtual crack-closure technique. A previous second-order plate theory solution was also utilized in the course of the comparison. The results indicate a good agreement between analysis and numerical computation and that third-order theory is better in some cases than the second-order approximation.  相似文献   

13.
In this work, crack formation and the corresponding failure load of bonded lap joints is analyzed. The analysis is based on linear elasticity solutions for bonded lap joints and makes use of the finite fracture mechanics. A hybrid criterion is applied that states the spontaneous formation of a crack of finite size if a stress and an energy criterion are fulfilled simultaneously. The stress distribution of a linear elasticity solution is used for the stress criterion and for the calculation of the incremental energy release rate which is necessary for definition of the energy criterion. The resulting fracture criterion is compared to literature results and shows a good agreement. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The article considers a three‐dimensional crack problem in linear elasticity with Dirichlet boundary conditions. The crack in this model problem is assumed to be a smooth open surface with smooth boundary curve. The hp‐version of the boundary element method with weakly singular operator is applied to approximate the unknown jump of the traction which is not L2‐regular due to strong edge singularities. Assuming quasi‐uniform meshes and uniform distributions of polynomial degrees, we prove an a priori error estimate in the energy norm. The estimate gives an upper bound for the error in terms of the mesh size h and the polynomial degree p. It is optimal in h for any given data and quasi‐optimal in p for sufficiently smooth data. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

15.
A strip-saturation model is proposed for a transversely isotropic piezoelectric plane weakened by two collinear equal cracks, when developed saturation zones at the interior tips of the cracks get coalesced. The plane is subjected to unidirectional, normal (to the crack length) in-plane tension and electric displacement. The developed saturation zones are arrested by distributing over their rims the normal, cohesive, unidirectional saturation-limit electrical displacement. The solution is obtained using Stroh formulation and complex variable technique. Closed form expressions are derived for crack opening displacement (COD), crack potential drop (COP), field intensity factors, length of saturation zone, energy release rate. Case study carried out for PZT-4 to show the effects of inter-crack distance on the stress intensity factor. The variations of energy release rates are plotted for PZT-4, PZT-5H and BaTiO3 to study the effects of the geometry of the two cracks.  相似文献   

16.
To describe the deformation and evolution of damage of glassy brittle materials, a kinetic model, which takes into account the transformation of elastic energy into surface energy, is proposed. The failure kinetics are characterized by a power dependence on the dynamic overload, which is equal to the difference between the rates of change of elastic and surface energies relative to the increase in damage of the medium. The model is applied to the problem of a plane failure wave in a half-space arising from the application of a normal load to the boundary. An approximate asymptotic solution is constructed by combining the two power series for the regions of slow and rapid change of the solution. As found in previous experiments, at moderate loads the values of the velocity and longitudinal stress in the regions of elasticity and the failed state of the material are the same. As the load increases, the distribution of these quantities become two-wave, the amplitude of the forerunner being greater than the elastic limit under uniaxial compression. In that case the structure of the failure wave largely depends on the power index of the kinetic function in the neighbourhood of the static state. If the index is less than one, the kinetics exerts an influence only in a finite neighbourhood of the failure front.  相似文献   

17.
In this paper, the basic solution of two collinear cracks in a piezoelectric material plane subjected to a uniform tension loading is investigated by means of the non-local theory. Through the Fourier transform, the problem is solved with the help of two pairs of integral equations, in which the unknown variables are the jumps of displacements across the crack surfaces. To solve the integral equations, the jumps of displacements across the crack surfaces are directly expanded in a series of Jacobi polynomials. Numerical examples are provided to show the effects of the interaction of two cracks, the materials constants and the lattice parameter on the stress field and the electric displacement field near crack tips. Unlike the classical elasticity solution, it is found that no stress and electric displacement singularities are present at crack tips. The non-local elastic solutions yield a finite hoop stress at the crack tip, thus allowing us to using the maximum stress as a fracture criterion in piezoelectric materials.  相似文献   

18.
The solution of a plane problem in the theory of elasticity for a two-component body with an interface, a finite part of which is either weakly distorted or is a weakly curved crack is constructed using the perturbation method. In the first case, it is assumed that the discontinuities in the forces and displacements at the interface are known, and, in the second case, the non-equilibrium nature of the load in the crack is taken into account. General quadrature formulae are derived for the complex potentials, which enable any approximation to be obtained in terms of elementary functions in many important practical cases. An algorithm is indicated for calculating each approximation. Families of defects are studied, the form of which is determined by power functions. The effect of the amplitude of the distortion and the shape of the interface crack on the Cherepanov–Rice integral as well as the shape of the distorted part of the interface on the stress concentration is investigated in the first approximation. An analysis of the applicability of the oscillating solution for a distorted interface crack is carried out. The results of the calculations are shown in the form of graphical relations.  相似文献   

19.
应用应力函数法,求解了二维十次对称准晶中的Ⅱ型Griffith裂纹问题。特点是把二维准晶的弹性力学问题分解成一个平面应变问题与一个反平面问题的叠加,通过引入应力函数,把平面应变问题的十八个弹性力学基本方程简化成一个八阶偏微分方程,并且求出了其在Ⅱ型Griffith裂纹情况的混合边值问题的解,所有的应力分量和位移分量都用初等函数表示出来,并且由此得出了准晶中Ⅱ型Griffith裂纹问题的应力强度因子和能量释放率。  相似文献   

20.
An interaction of a tunnel conductive crack and a distant strip electrode situated at the interface between two piezoelectric semi-infinite spaces is studied. The bimaterial is subject by an in-plane electrical field parallel to the interface and by an anti-plane mechanical loading. Using the presentations of electromechanical quantities at the interface via sectionally-analytic functions the problem is reduced to a combined Dirichlet-Riemann boundary value problem. Solution of this problem is found in an analytical form excepting some one-dimensional integrals calculations. Closed form expressions for the stress, the electric field and their intensity factors, as well as for the crack faces displacement jump are derived. On the base of these presentations the energy release rate is also found. The obtained solution is compared with simple particular case of a single crack without electrode and the excellent agreement is found out. An auxiliary plane problem for open and closed cracks between two isotropic materials is also considered. The mathematical model of this problem is identical to the above one, therefore, the obtained solution is used for this model. It is compared with finite element solution of a similar problem and good agreement is found out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号