首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In this paper, we establish the global existence and stability of a steady conic shock wave for the symmetrically perturbed supersonic flow past an infinitely long conic body as long as the vertex angle is less than a critical value. The flow is assumed to be polytropic, isentropic and described by a steady potential equation. Based on the delicate asymptotic expansion of the background solution, one can verify that the boundary conditions on the shock and the conic surface satisfy the “dissipative” property. From this property, by use of the reflected characteristics method and the special form of the shock equation, we show that the conic shock attached at the vertex of the cone exists globally in the whole space when the speed of the supersonic coming flow is appropriately large. On the other hand, we remove the smallness restriction on the sharp vertex angle in order to establish the global existence of a shock or a global weak solution, moreover, our proof approach is different from that in [Shuxing Chen, Zhouping Xin, Huicheng Yin, Global shock wave for the supersonic flow past a perturbed cone, Comm. Math. Phys. 228 (2002) 47-84] and [Zhouping Xin, Huicheng Yin, Global multidimensional shock wave for the steady supersonic flow past a three-dimensional curved cone, Anal. Appl. 4 (2) (2006) 101-132].  相似文献   

2.
In this paper, we are concerned with the global existence and stability of a steady transonic conic shock wave for the symmetrically perturbed supersonic flow past an infinitely long conic body. The flow is assumed to be polytropic, isentropic and described by a steady potential equation. Theoretically, as indicated in [R. Courant, K.O. Friedrichs, Supersonic Flow and Shock Waves, Interscience Publishers, Inc., New York, 1948], it follows from the Rankine-Hugoniot conditions and the entropy condition that there will appear a weak shock or a strong shock attached at the vertex of the sharp cone in terms of the different pressure states at infinity behind the shock surface, which correspond to the supersonic shock and the transonic shock respectively. In the references [Shuxing Chen, Zhouping Xin, Huicheng Yin, Global shock wave for the supersonic flow past a perturbed cone, Comm. Math. Phys. 228 (2002) 47-84; Dacheng Cui, Huicheng Yin, Global conic shock wave for the steady supersonic flow past a cone: Polytropic case, preprint, 2006; Dacheng Cui, Huicheng Yin, Global conic shock wave for the steady supersonic flow past a cone: Isothermal case, Pacific J. Math. 233 (2) (2007) 257-289] and [Zhouping Xin, Huicheng Yin, Global multidimensional shock wave for the steady supersonic flow past a three-dimensional curved cone, Anal. Appl. 4 (2) (2006) 101-132], the authors have established the global existence and stability of a supersonic shock for the perturbed hypersonic incoming flow past a sharp cone when the pressure at infinity is appropriately smaller than that of the incoming flow. At present, for the supersonic symmetric incoming flow, we will study the global transonic shock problem when the pressure at infinity is appropriately large.  相似文献   

3.
In the reference (Cui and Yin, Pacific J. Math. 233:257–289, 2007), under the assumptions that the supersonic incoming flow is isothermal and symmetrically perturbed with respect to a uniform supersonic constant state, the authors have shown the global existence and stability of a symmetric supersonic conic shock for such a supersonic flow past a circular cone. In this paper, we will remove all the symmetric assumptions in the previous paper and study the global existence problem on a really multidimensional shock wave. More concretely, we establish the global existence and stability of a three-dimensional supersonic conic shock wave for a perturbed steady supersonic isothermal flow past an infinitely long conic body.  相似文献   

4.
We study the existence of the nonsymmetrical conic shock wave produced by a supersonic flow past a distorted conic projectile. For the weak conic shock wave, we establish the existence and its linear stability using the mathematical model of an isentropic irrotational flow.  相似文献   

5.
In this paper, for the full Euler system of the isothermal gas, we show that a globally stable supersonic conic shock wave solution does not exist when a uniform supersonic incoming flow hits an infinitely long and curved sharp conic body.  相似文献   

6.
In this paper, we establish the existence and stability of a 3-D transonic shock solution to the full steady compressible Euler system in a class of de Laval nozzles with a conic divergent part when a given variable axi-symmetric exit pressure lies in a suitable scope. Thus, for this class of nozzles, we have solved such a transonic shock problem in the axi-symmetric case described by Courant and Friedrichs (1948) in Section 147 of [8]: Given the appropriately large exit pressure pe(x), if the upstream flow is still supersonic behind the throat of the nozzle, then at a certain place in the diverging part of the nozzle a shock front intervenes and the gas is compressed and slowed down to subsonic speed so that the position and the strength of the shock front are automatically adjusted such that the end pressure at the exit becomes pe(x).  相似文献   

7.
In this paper we establish the existence and uniqueness of a transonic shock for the steady flow through a general two‐dimensional nozzle with variable sections. The flow is governed by the inviscid potential equation, and is supersonic upstream, has no‐flow boundary conditions on the nozzle walls, and a given pressure at the exit of the exhaust section. The transonic shock is a free boundary dividing two regions of C flow in the nozzle. The potential equation is hyperbolic upstream where the flow is supersonic, and elliptic in the downstream subsonic region. In particular, our results show that there exists a solution to the corresponding free boundary problem such that the equation is always subsonic in the downstream region of the nozzle when the pressure in the exit of the exhaustion section is appropriately larger than that in the entry. This confirms exactly the conjecture of Courant and Friedrichs on the transonic phenomena in a nozzle [10]. Furthermore, the stability of the transonic shock is also proved when the upstream supersonic flow is a small steady perturbation for the uniform supersonic flow or the pressure at the exit has a small perturbation. The main ingredients of our analysis are a generalized hodograph transformation and multiplier methods for elliptic equation with mixed boundary conditions and corner singularities. © 2004 Wiley Periodicals, Inc.  相似文献   

8.
When steady supersonic flow hits a slim wedge, there may appear an oblique transonic shock attached to the vertex of the wedge, if the downstream pressure is rather large. This paper studies stability in certain weighted partial Hölder spaces of the oblique transonic shock attached to the vertex of a wedge, which is against steady supersonic flows, under perturbations of the upstream flow and the profile of the wedge. We show that under reasonable conditions on the upcoming supersonic flow and the slope of the wedge, such transonic shocks are structural stable. Mathematically, we solve an elliptic–hyperbolic mixed type in an unbounded domain, and the flow field is proved to be C1. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper we study the stability of transonic shocks in steady supersonic flow past a wedge. We take the potential flow equation as the mathematical model to describe the compressible flow. It is known that in generic case such a problem admits two possible location of shock, connecting the flow ahead it and behind it. They can be distinguished as supersonic-supersonic shock and supersonic-subsonic shock (or transonic shock). Both these possible shocks satisfy the Rankine-Hugoniot conditions and entropy condition. In this paper we prove that the transonic shock is also stable under perturbation of the coming flow provided the pressure at infinity is well controlled.  相似文献   

10.
We consider the problem of two‐dimensional supersonic flow onto a solid wedge, or equivalently in a concave corner formed by two solid walls. For mild corners, there are two possible steady state solutions, one with a strong and one with a weak shock emanating from the corner. The weak shock is observed in supersonic flights. A longstanding natural conjecture is that the strong shock is unstable in some sense. We resolve this issue by showing that a sharp wedge will eventually produce weak shocks at the tip when accelerated to a supersonic speed. More precisely, we prove that for upstream state as initial data in the entire domain, the time‐dependent solution is self‐similar, with a weak shock at the tip of the wedge. We construct analytic solutions for self‐similar potential flow, both isothermal and isentropic with arbitrary γ ≥ 1. In the process of constructing the self‐similar solution, we develop a large number of theoretical tools for these elliptic regions. These tools allow us to establish large‐data results rather than a small perturbation. We show that the wave pattern persists as long as the weak shock is supersonic‐supersonic; when this is no longer true, numerics show a physical change of behavior. In addition, we obtain rather detailed information about the elliptic region, including analyticity as well as bounds for velocity components and shock tangents. © 2007 Wiley Periodicals, Inc.  相似文献   

11.
In this paper, we study the global existence of the supersonic shock for the steady supersonic Euler flow past a curved 2-D wedge. By using the method of characteristic, we show that the shock exists globally and the flow between the shock and wedge is continuous provided the wedge is a small perturbation of a straight wedge under a weighted global Sobolev norm and the vertex angle is less than the extreme angle.  相似文献   

12.
We study the stability of transonic shocks in steady supersonic flow past a wedge. It is known that in generic case such a problem admits two possible locations of the shock front, connecting the flow ahead of it and behind it. They can be distinguished as supersonic–supersonic shock and supersonic–subsonic shock (or transonic shock). Both these possible shocks satisfy the Rankine–Hugoniot conditions and the entropy condition. We prove that the transonic shock is conditionally stable under perturbation of the upstream flow or perturbation of wedge boundary. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
We establish the existence and stability of multidimensional transonic shocks for the Euler equations for steady potential compressible fluids. The Euler equations, consisting of the conservation law of mass and the Bernoulli law for the velocity, can be written as a second-order, nonlinear equation of mixed elliptic-hyperbolic type for the velocity potential. The transonic shock problem can be formulated into the following free boundary problem: The free boundary is the location of the transonic shock which divides the two regions of smooth flow, and the equation is hyperbolic in the upstream region where the smooth perturbed flow is supersonic. We develop a nonlinear approach to deal with such a free boundary problem in order to solve the transonic shock problem. Our results indicate that there exists a unique solution of the free boundary problem such that the equation is always elliptic in the downstream region and the free boundary is smooth, provided that the hyperbolic phase is close to a uniform flow. We prove that the free boundary is stable under the steady perturbation of the hyperbolic phase. We also establish the existence and stability of multidimensional transonic shocks near spherical or circular transonic shocks.

  相似文献   


14.
An attached oblique shock wave is generated when a sharp solid projectile flies supersonically in the air. We study the linear stability of oblique shock waves in steady supersonic flow under three dimensional perturbation in the incoming flow. Euler system of equations for isentropic gas model is used. The linear stability is established for shock front with supersonic downstream flow, in addition to the usual entropy condition.  相似文献   

15.
We establish the existence and uniqueness of transonic flows with a transonic shock through a two-dimensional nozzle of slowly varying cross-sections. The transonic flow is governed by the steady, full Euler equations. Given an incoming smooth flow that is close to a constant supersonic state (i.e., smooth Cauchy data) at the entrance and the subsonic condition with nearly horizontal velocity at the exit of the nozzle, we prove that there exists a transonic flow whose downstream smooth subsonic region is separated by a smooth transonic shock from the upstream supersonic flow. This problem is approached by a one-phase free boundary problem in which the transonic shock is formulated as a free boundary. The full Euler equations are decomposed into an elliptic equation and a system of transport equations for the free boundary problem. An iteration scheme is developed and its fixed point is shown to exist, which is a solution of the free boundary problem, by combining some delicate estimates for the elliptic equation and the system of transport equations with the Schauder fixed point argument. The uniqueness of transonic nozzle flows is also established by employing the coordinate transformation of Euler-Lagrange type and detailed estimates of the solutions.  相似文献   

16.
The problem of the flow of a uniform supersonic ideal (inviscid and non-heat-conducting) gas over a wedge is considered. If the turning angle of the flow, which is equal to the angle of inclination of the generatrix of the wedge, is less than the maximum value, the problem has two solutions. In the solution with an oblique low-intensity (“weak”) shock, the uniform flow between the shock and the wedge is almost always supersonic. One exception is a small vicinity of the maximum turning angle. For an ideal gas this vicinity does not exceed a fraction of a degree at all Mach numbers. Behind a high-intensity (“strong”) shock, the flow of an ideal gas is always subsonic. “Weak” shocks are observed in all experiments with finite wedges. Some researchers attribute this preference to the “downstream” boundary conditions (“on the right at infinity” for a flow incident on the wedge from the left), and others attribute it to the instability (“Lyapunov” instability) of a flow with a strong shock when it flows over the wedge and to the stability of flow with a weak shock. The results presented below from calculations of the flows that occur for finite wedges within the two-dimensional unsteady Euler equations, when the parameters behind the strong shock are specified on the right-hand boundary, i.e., on the arc of a circle between the wedge and the shock, demonstrate the correctness of the conclusion of the first group of researchers and the incorrectness of the conclusion of the other group. In these calculations, after both small and fairly large perturbations, the flows investigated (which are, in fact, Lyapunov unstable!) return to the solution with a strong shock. In addition, the problem of steady flow over a wedge was regarded as the limit of the two-dimensional non-steady problems at infinite time. Simplification of one of them leads to the problem of the submerged over-expanded supersonic steady outflow. In the ideal gas model this problem is equivalent to flow over a wedge with both weak and strong shocks. All the solutions considered are stable.  相似文献   

17.
This paper is devoted to the study of a transonic shock in three-dimensional steady compressible flow passing a duct with a general section. The flow is described by the steady full Euler system, which is purely hyperbolic in the supersonic region and is of elliptic-hyperbolic type in the subsonic region. The upstream flow at the entrance of the duct is a uniform supersonic one adding a three-dimensional perturbation, while the pressure of the downstream flow at the exit of the duct is assigned apart from a constant difference. The problem to determine the transonic shock and the flow behind the shock is reduced to a free boundary value problem of an elliptic-hyperbolic system. The new ingredients of our paper contain the decomposition of the elliptic-hyperbolic system, the determination of the shock front by a pair of partial differential equations coupled with the three-dimensional Euler system, and the regularity analysis of solutions to the boundary value problems introduced in our discussion.

  相似文献   


18.
Russian Mathematics - We study a steady 3D flow of the ideal gas. In the flow between the bow shock wave and the nose part of the body streamlined by the uniform supersonic flow, we consider...  相似文献   

19.
The problem of shock reflection by a wedge, which the flow is dominated by the unsteady potential flow equation, is a important problem. In weak regular reflection, the flow behind the reflected shock is immediately supersonic and becomes subsonic further downstream. The reflected shock is transonic. Its position is a free boundary for the unsteady potential equation, which is degenerate at the sonic line in self-similar coordinates. Applying the special partial hodograph transformation used in [Zhouping Xin, Huicheng Yin, Transonic shock in a nozzle I, 2-D case, Comm. Pure Appl. Math. 57 (2004) 1-51; Zhouping Xin, Huicheng Yin, Transonic shock in a nozzle II, 3-D case, IMS, preprint (2003)], we derive a nonlinear degenerate elliptic equation with nonlinear boundary conditions in a piecewise smooth domain. When the angle, which between incident shock and wedge, is small, we can see that weak regular reflection as the disturbance of normal reflection as in [Shuxing Chen, Linear approximation of shock reflection at a wedge with large angle, Comm. Partial Differential Equations 21 (78) (1996) 1103-1118]. By linearizing the resulted nonlinear equation and boundary conditions with above viewpoint, we obtain a linear degenerate elliptic equation with mixed boundary conditions and a linear degenerate elliptic equation with oblique boundary conditions in a curved quadrilateral domain. By means of elliptic regularization techniques, delicate a priori estimate and compact arguments, we show that the solution of linearized problem with oblique boundary conditions is smooth in the interior and Lipschitz continuous up to the degenerate boundary.  相似文献   

20.
We study free boundary value problems of elliptic equation caused by a supersonic flow past a non-symmetric conical body. The flow is described by the potential flow equation. In the self-similar coordinate system the problem can be reduced to a boundary value problem of second order nonlinear elliptic equation with a free boundary. Applying the partial hodograph transformation and the method of nonlinear alternative iteration we proved the existence of solution to this boundary value problem. Consequently, we also proved the conclusion that for the problem of supersonic flow past a conical body, if the conical body is slightly different from a circular cone with its vertex angle less than a given value determined by the parameters of the coming flow, then there exists a weak entropy solution with an attached conical shock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号