首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
讨论连续的混沌动力系统之间的广义同步.利用Liapunov稳定性理论,通过构造适当的耦合项,得到了一个关于驱动响应系统广义同步的充分条件.并通过对两个例子的数字模拟,说明了充分条件的有效性.  相似文献   

2.
针对带有不确定参数的一类混沌金融系统,提出了实现驱动系统和响应系统广义投影同步的自适应控制策略,并基于Lyapunov稳定性理论给出和验证了广义投影同步稳定性判据.数值仿真验证了控制策略和理论分析的有效性.  相似文献   

3.
Base on the stability theory of fractional order system, this work mainly investigates modified projective synchronization of two fractional order hyperchaotic systems with unknown parameters. A controller is designed for synchronization of two different fractional order hyperchaotic systems. The method is successfully applied to modified projective synchronization between fractional order Rössler hyperchaotic system and fractional order Chen hyperchaotic system, and numerical simulations illustrate the effectiveness of the obtained results.  相似文献   

4.
In the present article, the authors have proposed a modified projective adaptive synchronization technique for fractional‐order chaotic systems. The adaptive projective synchronization controller and identification parameters law are developed on the basis of Lyapunov direct stability theory. The proposed method is successfully applied for the projective synchronization between fractional‐order hyperchaotic Lü system as drive system and fractional‐order hyperchaotic Lorenz chaotic system as response system. A comparison between the effects on synchronization time due to the presence of fractional‐order time derivatives for modified projective synchronization method and proposed modified adaptive projective synchronization technique is the key feature of the present article. Numerical simulation results, which are carried out using Adams–Boshforth–Moulton method show that the proposed technique is effective, convenient and also faster for projective synchronization of fractional‐order nonlinear dynamical systems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents a new fractional-order hyperchaotic system. The chaotic behaviors of this system in phase portraits are analyzed by the fractional calculus theory and computer simulations. Numerical results have revealed that hyperchaos does exist in the new fractional-order four-dimensional system with order less than 4 and the lowest order to have hyperchaos in this system is 3.664. The existence of two positive Lyapunov exponents further verifies our results. Furthermore, a novel modified generalized projective synchronization (MGPS) for the fractional-order chaotic systems is proposed based on the stability theory of the fractional-order system, where the states of the drive and response systems are asymptotically synchronized up to a desired scaling matrix. The unpredictability of the scaling factors in projective synchronization can additionally enhance the security of communication. Thus MGPS of the new fractional-order hyperchaotic system is applied to secure communication. Computer simulations are done to verify the proposed methods and the numerical results show that the obtained theoretic results are feasible and efficient.  相似文献   

6.
Song Zheng 《Complexity》2016,21(6):343-355
This article is concerned with the problem of synchronization between two uncertain complex‐variable chaotic systems with parameters perturbation and discontinuous unidirectional coupling. Based on the stability theory and comparison theorem of differential equations, some sufficient conditions for the complete synchronization and generalized synchronization are obtained. The theoretical results show that the two uncertain complex‐variable chaotic systems with discontinuous unidirectional coupling can achieve synchronization if the time‐average coupling strength is large enough. Finally, numerical examples are examined to illustrate the feasibility and effectiveness of the analytical results. © 2015 Wiley Periodicals, Inc. Complexity 21: 343–355, 2016  相似文献   

7.
《Applied Mathematical Modelling》2014,38(15-16):4076-4085
This paper investigates the global finite-time synchronization of two chaotic Lorenz–Stenflo systems coupled by a new controller called the generalized variable substitution controller. First of all, the generalized variable substitution controller is designed to establish the master–slave finite-time synchronization scheme for the Lorenz–Stenflo systems. And then, based on the finite-time stability theory, a sufficient criterion on the finite-time synchronization of this scheme is rigorously verified in the form of matrix and the corresponding estimation for the synchronization time is analytically given. Applying this criterion, some sufficient finite-time synchronization criteria under various generalized variable substitution controllers are further derived in the algebraic form. Finally, some numerical examples are introduced to compare the results proposed in this paper with those proposed in the existing literature, verifying the effectiveness of the criteria obtained.  相似文献   

8.
本文研究了异维混沌动力系统的有限时间广义同步的问题.利用有限时间Lyapunov稳定性定理、Jensen不等式等理论方法,通过设置不同的控制器,从理论上提出了一般的异维驱动系统和响应系统的有限时间广义同步的两种方案,并且对方案二中的影响同步时间因素做了理论分析和证明.最后,数值模拟验证了提出理论的正确性和可行性.  相似文献   

9.
In this paper, a novel fractional‐integer integral type sliding mode technique for control and generalized function projective synchronization of different fractional‐order chaotic systems with different dimensions in the presence of disturbances is presented. When the upper bounds of the disturbances are known, a sliding mode control rule is proposed to insure the existence of the sliding motion in finite time. Furthermore, an adaptive sliding mode control is designed when the upper bounds of the disturbances are unknown. The stability analysis of sliding mode surface is given using the Lyapunov stability theory. Finally, the results performed for synchronization of three‐dimensional fractional‐order chaotic Hindmarsh‐Rose (HR) neuron model and two‐dimensional fractional‐order chaotic FitzHugh‐Nagumo (FHN) neuron model.  相似文献   

10.
In this paper, multi‐switching combination–combination synchronization scheme has been investigated between a class of four non‐identical fractional‐order chaotic systems. The fractional‐order Lorenz and Chen's systems are taken as drive systems. The combination–combination of multi drive systems is then synchronized with the combination of fractional‐order Lü and Rössler chaotic systems. In multi‐switching combination–combination synchronization, the state variables of two drive systems synchronize with different state variables of two response systems simultaneously. Based on the stability of fractional‐order chaotic systems, the multi‐switching combination–combination synchronization of four fractional‐order non‐identical systems has been investigated. For the synchronization of four non‐identical fractional‐order chaotic systems, suitable controllers have been designed. Theoretical analysis and numerical results are presented to demonstrate the validity and feasibility of the applied method. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, a new function cascade synchronization method of chaos system is proposed to achieve generalized projective synchronization for chaotic systems. Based on Laypunov stability, the proposed synchronization technique is applied to three famous chaotic systems: the unified chaotic system, Liu system and Rössler system, which can make the states of two identical chaotic systems asymptotically synchronized by choosing different special suitable error functions. Numerical simulations are presented to show the effectiveness.  相似文献   

12.
研究了一类分数阶金融系统的混沌同步问题,基于Lyapunov稳定性理论和分数阶微积分的相关理论,给出了两种实现同步的控制方案,仿真算例表明了方法的有效性.  相似文献   

13.
This article focuses on the problem of exponential synchronization for fractional‐order chaotic systems via a nonfragile controller. A criterion for α‐exponential stability of an error system is obtained using the drive‐response synchronization concept together with the Lyapunov stability theory and linear matrix inequalities approach. The uncertainty in system is considered with polytopic form together with structured form. The sufficient conditions are derived for two kinds of structured uncertainty, namely, (1) norm bounded one and (2) linear fractional transformation one. Finally, numerical examples are presented by taking the fractional‐order chaotic Lorenz system and fractional‐order chaotic Newton–Leipnik system to illustrate the applicability of the obtained theory. © 2014 Wiley Periodicals, Inc. Complexity 21: 114–125, 2015  相似文献   

14.
针对一类含有不确定项的混沌系统,设计了广义同步响应系统,利用系统稳定性理论设计了自适应广义同步控制器及自适应率,实现了驱动系统和所设计的响应系统广义同步,所设计的控制策略对外界干扰有较强的鲁棒性,而且通过引入加速因子,可任意配置同步响应速度,具有较高的应用价值,理论分析及仿真结果验证了该方法的有效性。  相似文献   

15.
针对一类非线性时滞混沌系统,提出了一种新的自适应脉冲同步方案.首先基于Lyapunov稳定性理论、自适应控制理论及脉冲控制理论设计了自适应控制器、脉冲控制器及参数自适应律,然后利用推广的Barbalat引理,理论证明响应系统与驱动系统全局渐近同步,并给出了相应的充分条件.方案利用参数逼近Lipschitz常数,从而取消了Lipschitz常数已知的假设.两个数值仿真例子表明本方法的有效性.  相似文献   

16.
本文研究了两个离散网络之间的广义同步,其中每个网络的节点动力学是不同的,节点数目也没有要求是相等的.通过使用辅助系统方法,我们给出了基于李雅普诺夫稳定性理论的广义同步定理.最后,用数值例子来验证定理的有效性.  相似文献   

17.
This paper is devoted to investigate synchronization and antisynchronization of N‐coupled general fractional‐order complex chaotic systems described by a unified mathematical expression with ring connection. By means of the direct design method, the appropriate controllers are designed to transform the fractional‐order error dynamical system into a nonlinear system with antisymmetric structure. Thus, by using the recently established result for the Caputo fractional derivative of a quadratic function and a fractional‐order extension of the Lyapunov direct method, several stability criteria are derived to ensure the occurrence of synchronization and antisynchronization among N‐coupled fractional‐order complex chaotic systems. Moreover, numerical simulations are performed to illustrate the effectiveness of the proposed design.  相似文献   

18.
In this paper, we deliver a normalized synchronization transformation to study the generalized exact boundary synchronization for a coupled system of wave equations with Dirichlet boundary controls. The clear relationship among the generalized exact boundary synchronization, the exact boundary null controllability, and the generalized exactly synchronizable states is precisely obtained. This approach gives further a forthright decomposition for the generalized exact boundary synchronization problem, whereby, we gain directly the determination of generalized exactly synchronizable states.  相似文献   

19.
In this paper, a special kind of nonlinear chaotic oscillator, the Qi oscillator, is studied in detail. Since such systems are shown to possess a relatively wide spectral bandwidth, it is considerably beneficial to practical engineering in the secure communication field. The chaos synchronization problem of the fractional-order Qi oscillators coupled in a master-slave pattern is examined by applying three different kinds of methods: the nonlinear feedback method, the one-way coupling method and the method based on the state observer. Suitable synchronization conditions are derived by using the Lyapunov stability theory, and most importantly, a sufficient and necessary synchronization condition for the case with fractional order between 1 and 2 is presented. Results of numerical simulations validate the effectiveness and applicability of the proposed schemes.  相似文献   

20.
In this article, based on the stability theory of fractional‐order systems, chaos synchronization is achieved in the fractional‐order modified Van der Pol–Duffing system via a new linear control approach. A fractional backstepping controller is also designed to achieve chaos synchronization in the proposed system. Takagi‐Sugeno fuzzy models‐based are also presented to achieve chaos synchronization in the fractional‐order modified Van der Pol–Duffing system via linear control technique. Numerical simulations are used to verify the effectiveness of the synchronization schemes. © 2015 Wiley Periodicals, Inc. Complexity 21: 116–124, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号