首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
《Optimization》2012,61(12):1449-1465
We analyse the primal-dual states in linear semi-infinite programming (LSIP), where we consider the primal problem and the so called Haar's dual problem. Any linear programming problem and its dual can be classified as bounded, unbounded or inconsistent, giving rise to nine possible primal-dual states, which are reduced to six by the weak duality property. Recently, Goberna and Todorov have studied this partition and its stability in continuous LSIP in a series of papers [M.A. Goberna and M.I. Todorov, Primal, dual and primal-dual partitions in continuous linear semi-infinite programming, Optimization 56 (2007), pp. 617–628; M.A. Goberna and M.I. Todorov, Generic primal-dual solvability in continuous linear semi-infinite programming, Optimization 57 (2008), pp. 239–248]. In this article we consider the general case, with no continuity assumptions, discussing the maintenance of the primal-dual state of the problem by allowing small perturbations of the data. We characterize the stability of all of the six possible primal-dual states through necessary and sufficient conditions which depend on the data, and can be easily checked, showing some differences with the continuous case. These conditions involve the strong Slater constraint qualification, and some distinguished convex sets associated to the data.  相似文献   

2.
This paper develops a wholly linear formulation of the posynomial geometric programming problem. It is shown that the primal geometric programming problem is equivalent to a semi-infinite linear program, and the dual problem is equivalent to a generalized linear program. Furthermore, the duality results that are available for the traditionally defined primal-dual pair are readily obtained from the duality theory for semi-infinite linear programs. It is also shown that two efficient algorithms (one primal based and the other dual based) for geometric programming actually operate on the semi-infinite linear program and its dual.  相似文献   

3.
Ziyan Luo  Naihua Xiu 《Positivity》2010,14(3):481-499
In this paper, we consider the Lyapunov-type linear programming and its dual over symmetric cones. By introducing and characterizing the generalized inverse of Lyapunov operator in Euclidean Jordan algebras, we establish two kinds of Lyapunov-type Farkas’ lemmas to exhibit feasibilities of the corresponding primal and dual programming problems, respectively. As one of the main results, we show that the feasibilities of the primal and dual problems lead to the solvability of the primal problem and zero duality gap under some mild condition. In this case, we obtain that any solution to the pair of primal and dual problems is equivalent to the solution of the corresponding KKT system.  相似文献   

4.
It is known that the minimal cone for the constraint system of a conic linear programming problem is a key component in obtaining strong duality without any constraint qualification. For problems in either primal or dual form, the minimal cone can be written down explicitly in terms of the problem data. However, due to possible lack of closure, explicit expressions for the dual cone of the minimal cone cannot be obtained in general. In the particular case of semidefinite programming, an explicit expression for the dual cone of the minimal cone allows for a dual program of polynomial size that satisfies strong duality. In this paper we develop a recursive procedure to obtain the minimal cone and its dual cone. In particular, for conic problems with so-called nice cones, we obtain explicit expressions for the cones involved in the dual recursive procedure. As an example of this approach, the well-known duals that satisfy strong duality for semidefinite programming problems are obtained. The relation between this approach and a facial reduction algorithm is also discussed.  相似文献   

5.
In order to study the behavior of interior-point methods on very large-scale linear programming problems, we consider the application of such methods to continuous semi-infinite linear programming problems in both primal and dual form. By considering different discretizations of such problems we are led to a certain invariance property for (finite-dimensional) interior-point methods. We find that while many methods are invariant, several, including all those with the currently best complexity bound, are not. We then devise natural extensions of invariant methods to the semi-infinite case. Our motivation comes from our belief that for a method to work well on large-scale linear programming problems, it should be effective on fine discretizations of a semi-infinite problem and it should have a natural extension to the limiting semi-infinite case.Research supported in part by NSF, AFORS and ONR through NSF grant DMS-8920550.  相似文献   

6.
This paper deals with the stability of linear semi-infinite programming (LSIP, for short) problems. We characterize those LSIP problems from which we can obtain, under small perturbations in the data, different types of problems, namely, inconsistent, consistent unsolvable, and solvable problems. The problems of this class are highly unstable and, for this reason, we say that they are totally ill-posed. The characterization that we provide here is of geometrical nature, and it depends exclusively on the original data (i.e., on the coefficients of the nominal LSIP problem). Our results cover the case of linear programming problems, and they are mainly obtained via a new formula for the subdifferential mapping of the support function.  相似文献   

7.
Lingchen Kong 《Positivity》2012,16(2):297-319
This paper deals with symmetric cone programming (SCP), which includes the linear programming (LP), the second-order cone programming (SOCP), the semidefinite programming (SDP) as special cases. Based on the Chen?CMangasarian smoothing function of the projection operator onto symmetric cones, we establish a smoothing Newton method for SCP. Global and quadratic convergence of the proposed algorithm is established under the primal and dual constraint nondegeneracies, but without the strict complementarity. Moreover, we show the equivalence at a Karush?CKuhn?CTucker (KKT) point among the primal and dual constraint nondegeneracies, the nonsingularity of the B-subdifferential of the smoothing counterpart of the KKT system, and the nonsingularity of the corresponding Clarke??s generalized Jacobian.  相似文献   

8.
When the terms in a convex primal geometric programming (GP) problem are multiplied by slack variables whose values must be at least unity, the invariance conditions may be solved as constraints in a linear programming (LP) problem in logarithmically transformed variables. The number of transformed slack variables included in the optimal LP basis equals the degree of difficulty of the GP problem, and complementary slackness conditions indicate required changes in associated GP dual variables. A simple, efficient search procedure is used to generate a sequence of improving primal feasible solutions without requiring the use of the GP dual objective function. The solution procedure appears particularly advantageous when solving very large geometric programming problems, because only the right-hand constants in a system of linear equations change at each iteration.The influence of J. G. Ecker, the writer's teacher, is present throughout this paper. Two anonymous referees and the Associate Editor made very helpful suggestions. Dean Richard W. Barsness provided generous support for this work.  相似文献   

9.
We deal with the linear programming problem in which input data can vary in some given real compact intervals. The aim is to compute the exact range of the optimal value function. We present a general approach to the situation the feasible set is described by an arbitrary linear interval system. Moreover, certain dependencies between the constraint matrix coefficients can be involved. As long as we are able to characterize the primal and dual solution set (the set of all possible primal and dual feasible solutions, respectively), the bounds of the objective function result from two nonlinear programming problems. We demonstrate our approach on various cases of the interval linear programming problem (with and without dependencies).  相似文献   

10.
Dual interior point methods for solving linear semidefinite programming problems are proposed. These methods are an extension of dual barrier-projection methods for linear programs. It is shown that the proposed methods converge locally at a linear rate provided that the solutions to the primal and dual problems are nondegenerate.  相似文献   

11.
The least-squares method is used to obtain a stable algorithm for a system of linear inequalities as well as linear and nonlinear programming. For these problems the solution with minimal norm for a system of linear inequalities is found by solving the non-negative least-squares (NNLS) problem. Approximate and exact solutions of these problems are discussed. Attention is mainly paid to finding the initial solution to an LP problem. For this purpose an NNLS problem is formulated, enabling finding the initial solution to the primal or dual problem, which may turn out to be optimal. The presented methods are primarily suitable for ill-conditioned and degenerate problems, as well as for LP problems for which the initial solution is not known. The algorithms are illustrated using some test problems.  相似文献   

12.
《Optimization》2012,61(2):141-156
This paper studies a linear programming problem in measure spaces (LPM). Several results are obtained. First, the optimal value of LPM can be equal to the optimal value of the dual problem (DLPM), but the solution of DLPM may be not exist in its feasible region. Sccond, :he relations between the optimal solution of LPM and the extreme point of the feasible region of LPM are discussed. In order to investigate the conditions under which a feasible solution becomes an extremal point, the inequality constraint of LPM is transformed to an equality constraint. Third, the LPM can be reformulated to be a general capacity problem (GCAP) or a linear semi-infinite programming problem (LSIP = SIP), and under appropriate restrictioiis, the algorithm developed by the authors in [7] and [8] are applicable for developing an approximation scheme for the optimal solution of LPM  相似文献   

13.
In this paper, we consider the following minimax linear programming problem: min z = max1 ≤ jn{CjXj}, subject to Ax = g, x ≥ 0. It is well known that this problem can be transformed into a linear program by introducing n additional constraints. We note that these additional constraints can be considered implicitly by treating them as parametric upper bounds. Based on this approach we develop two algorithms: a parametric algorithm and a primal—dual algorithm. The parametric algorithm solves a linear programming problem with parametric upper bounds and the primal—dual algorithm solves a sequence of related dual feasible linear programming problems. Computation results are also presented, which indicate that both the algorithms are substantially faster than the simplex algorithm applied to the enlarged linear programming problem.  相似文献   

14.
Logarithmic SUMT limits in convex programming   总被引:1,自引:1,他引:0  
The limits of a class of primal and dual solution trajectories associated with the Sequential Unconstrained Minimization Technique (SUMT) are investigated for convex programming problems with non-unique optima. Logarithmic barrier terms are assumed. For linear programming problems, such limits – of both primal and dual trajectories – are strongly optimal, strictly complementary, and can be characterized as analytic centers of, loosely speaking, optimality regions. Examples are given, which show that those results do not hold in general for convex programming problems. If the latter are weakly analytic (Bank et al. [3]), primal trajectory limits can be characterized in analogy to the linear programming case and without assuming differentiability. That class of programming problems contains faithfully convex, linear, and convex quadratic programming problems as strict subsets. In the differential case, dual trajectory limits can be characterized similarly, albeit under different conditions, one of which suffices for strict complementarity. Received: November 13, 1997 / Accepted: February 17, 1999?Published online February 22, 2001  相似文献   

15.
We consider the class of linear programs with infinitely many variables and constraints having the property that every constraint contains at most finitely many variables while every variable appears in at most finitely many constraints. Examples include production planning and equipment replacement over an infinite horizon. We form the natural dual linear programming problem and prove strong duality under a transversality condition that dual prices are asymptotically zero. That is, we show, under this transversality condition, that optimal solutions are attained in both primal and dual problems and their optimal values are equal. The transversality condition, and hence strong duality, is established for an infinite horizon production planning problem.This material is based on work supported by the National Science Foundation under Grant No. ECS-8700836.  相似文献   

16.
A duality theory for algebraic linear (integer) programming (ALP) is developed which is of the same importance for linear (integer) programming with linear algebraic objectives as linear programming duality is for classical LP. In particular, optimality criteria for primal, primal-dual, and dual methods are given which generalize feasibility and complementarity criteria of classical LP. Strong duality results are given for special combinatorial problems. Further, the validity and finiteness of a primal simplex method based on a feasibility criterion are proved in the case of nondiscrete variables. In this case a strong duality result is shown.  相似文献   

17.
This paper presents a primal-dual conjugate subgradient algorithm for solving convex programming problems. The motivation, however, is to employ it for solving specially structured or decomposable linear programming problems. The algorithm coordinates a primal penalty function and a Lagrangian dual function, in order to generate a (geometrically) convergent sequence of primal and dual iterates. Several refinements are discussed to improve the performance of the algorithm. These are tested on some network problems, with side constraints and variables, faced by the Freight Equipment Management Program of the Association of American Railroads, and suggestions are made for implementation.This research was supported by the Association of American Railroads.  相似文献   

18.
A one-phase algorithm for semi-infinite linear programming   总被引:1,自引:0,他引:1  
We present an algorithm for solving a large class of semi-infinite linear programming problems. This algorithm has several advantages: it handles feasibility and optimality together; it has very weak restrictions on the constraints; it allows cuts that are not near the most violated cut; and it solves the primal and the dual problems simultaneously. We prove the convergence of this algorithm in two steps. First, we show that the algorithm can find an-optimal solution after finitely many iterations. Then, we use this result to show that it can find an optimal solution in the limit. We also estimate how good an-optimal solution is compared to an optimal solution and give an upper bound on the total number of iterations needed for finding an-optimal solution under some assumptions. This algorithm is generalized to solve a class of nonlinear semi-infinite programming problems. Applications to convex programming are discussed.  相似文献   

19.
Recently, a semidefinite and semi-infinite linear programming problem (SDSIP), its dual (DSDSIP), and uniform LP duality between (SDSIP) and (DSDSIP) were proposed and studied by Li et al. (Optimization 52:507–528, 2003). In this paper, we show that (SDSIP) is an ordinary linear semi-infinite program and, therefore, all the existing results regarding duality and uniform LP duality for linear semi-infinite programs can be applied to (SDSIP). By this approach, the main results of Li et al. (Optimization 52:507–528, 2003) can be obtained easily.  相似文献   

20.
In this paper, we generalize the concept of sensitivity analysis in fuzzy number linear programming (FLNP) problems by applying fuzzy simplex algorithms and using the general linear ranking functions on fuzzy numbers. The purpose of sensitivity analysis is to determine changes in the optimal solution of FNLP problem resulting from changes in the data. If the change affects the optimality of the basis, we perform primal pivots to achieve optimality by use of the fuzzy primal simplex method. Whenever the change destroys the feasibility of the optimal basis, we perform dual pivots to achieve feasibility by use of the fuzzy dual simplex method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号