首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
A well‐known formula of Tutte and Berge expresses the size of a maximum matching in a graph G in terms of what is usually called the deficiency of G. A subset X of V(G) for which this deficiency is attained is called a Tutte set of G. While much is known about maximum matchings, less is known about the structure of Tutte sets. In this article, we study the structural aspects of maximal Tutte sets in a graph G. Towards this end, we introduce a related graph D(G). We first show that the maximal Tutte sets in G are precisely the maximal independent sets in its D‐graph D(G), and then continue with the study of D‐graphs in their own right, and of iterated D‐graphs. We show that G is isomorphic to a spanning subgraph of D(G), and characterize the graphs for which G?D(G) and for which D(G)?D2(G). Surprisingly, it turns out that for every graph G with a perfect matching, D3(G)?D2(G). Finally, we characterize bipartite D‐graphs and comment on the problem of characterizing D‐graphs in general. © 2007 Wiley Periodicals, Inc. J Graph Theory 55: 343–358, 2007  相似文献   

2.
 A well-known and essential result due to Roy ([4], 1967) and independently to Gallai ([3], 1968) is that if D is a digraph with chromatic number χ(D), then D contains a directed path of at least χ(D) vertices. We generalize this result by showing that if ψ(D) is the minimum value of the number of the vertices in a longest directed path starting from a vertex that is connected to every vertex of D, then χ(D) ≤ψ(D). For graphs, we give a positive answer to the following question of Fajtlowicz: if G is a graph with chromatic number χ(G), then for any proper coloring of G of χ(G) colors and for any vertex vV(G), there is a path P starting at v which represents all χ(G) colors. Received: May 20, 1999 Final version received: December 24, 1999  相似文献   

3.
We consider a problem related to Hadwiger's Conjecture. Let D=(d1, d2, …, dn) be a graphic sequence with 0?d1?d2?···?dn?n?1. Any simple graph G with D its degree sequence is called a realization of D. Let R[D] denote the set of all realizations of D. Define h(D)=max{h(G): GR[D]} and χ(D)=max{χ(G): GR[D]}, where h(G) and χ(G) are Hadwiger number and chromatic number of a graph G, respectively. Hadwiger's Conjecture implies that h(D)?χ(D). In this paper, we establish the above inequality for near regular degree sequences. © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 175–183, 2010  相似文献   

4.
Let G=(V,E) be a graph without an isolated vertex. A set DV(G) is a total dominating set if D is dominating, and the induced subgraph G[D] does not contain an isolated vertex. The total domination number of G is the minimum cardinality of a total dominating set of G. A set DV(G) is a total outer-connected dominating set if D is total dominating, and the induced subgraph G[V(G)−D] is a connected graph. The total outer-connected domination number of G is the minimum cardinality of a total outer-connected dominating set of G. We characterize trees with equal total domination and total outer-connected domination numbers. We give a lower bound for the total outer-connected domination number of trees and we characterize the extremal trees.  相似文献   

5.
In 1960, Baumslag, following up on work of Cernikov for the 1940s, proved that a hypercentral p-group G with G = G p is a divisible Abelian group. In this article, we provide an interesting generalization of this 45 year old result: If a hypercentral p-group G satisfies |G:G p |<∞ (of course, it contains G = G p ), there exists a normal divisible Abelian subgroup D such that |G:D|<∞.  相似文献   

6.
Let G be a connected plane graph, D(G) be the corresponding link diagram via medial construction, and μ(D(G)) be the number of components of the link diagram D(G). In this paper, we first provide an elementary proof that μ(D(G))≤n(G)+1, where n(G) is the nullity of G. Then we lay emphasis on the extremal graphs, i.e. the graphs with μ(D(G))=n(G)+1. An algorithm is given firstly to judge whether a graph is extremal or not, then we prove that all extremal graphs can be obtained from K1 by applying two graph operations repeatedly. We also present a dual characterization of extremal graphs and finally we provide a simple criterion on structures of bridgeless extremal graphs.  相似文献   

7.
We consider the following problem: Given positive integers k and D, what is the maximum diameter of the graph obtained by deleting k edges from a graph G with diameter D, assuming that the resulting graph is still connected? For undirected graphs G we prove an upper bound of (k + 1)D and a lower bound of (k + 1)D ? k for even D and of (k + 1)D ? 2k + 2 for odd D ? 3. For the special cases of k = 2 and k = 3, we derive the exact bounds of 3D ? 1 and 4D ? 2, respectively. For D = 2 we prove exact bounds of k + 2 and k + 3, for k ? 4 and k = 6, and k = 5 and k ? 7, respectively. For the special case of D = 1 we derive an exact bound on the resulting maximum diameter of order θ(√k). For directed graphs G, the bounds depend strongly on D: for D = 1 and D = 2 we derive exact bounds of θ(√k) and of 2k + 2, respectively, while for D ? 3 the resulting diameter is in general unbounded in terms of k and D. Finally, we prove several related problems NP-complete.  相似文献   

8.
《代数通讯》2013,41(9):3367-3373
ABSTRACT

Let D be a finite dimensional F -central division algebra and G an irreducible subgroup of D*: = GL 1(D). Here we investigate the structure of D under various group identities on G. In particular, it is shown that when [D:F] = p 2, p a prime, then D is cyclic if and only if D* contains a nonabelian subgroup satisfying a group identity.  相似文献   

9.
Let D(G) denote the distance matrix of a connected graph G. The largest eigenvalue of D(G) is called the distance spectral radius of a graph G, denoted by ?(G). In this article, we give sharp upper and lower bounds for the distance spectral radius and characterize those graphs for which these bounds are best possible.  相似文献   

10.
Bounds on the Distance Two-Domination Number of a Graph   总被引:1,自引:0,他引:1  
 For a graph G = (V, E), a subset DV(G) is said to be distance two-dominating set in G if for each vertex uVD, there exists a vertex vD such that d(u,v)≤2. The minimum cardinality of a distance two-dominating set in G is called a distance two-domination number and is denoted by γ2(G). In this note we obtain various upper bounds for γ2(G) and characterize the classes of graphs attaining these bounds. Received: May 31, 1999 Final version received: July 13, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号