首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An efficient diffusion approach for chaos-based image encryption   总被引:2,自引:0,他引:2  
One of the existing chaos-based image cryptosystems is composed of alternative substitution and diffusion stages. A multi-dimensional chaotic map is usually employed in the substitution stage for image pixel permutation while a one-dimensional (1D) chaotic map is used for diffusion purpose. As the latter usually involves real number arithmetic operations, the overall encryption speed is limited by the diffusion stage. In this paper, we propose a more efficient diffusion mechanism using simple table lookup and swapping techniques as a light-weight replacement of the 1D chaotic map iteration. Simulation results show that at a similar security level, the proposed cryptosystem needs about one-third the encryption time of a similar cryptosystem. The effective acceleration of chaos-based image cryptosystems is thus achieved.  相似文献   

2.
This paper addresses a unified mathematical expression describing a class of chaotic systems, for which the problem of adaptive synchronization between two nearly identical chaotic and hyper-chaotic systems with uncertain parameters is studied. Based on Lyapunov stability theory, a novel adaptive synchronization controller is designed, and the analytic expression of the controller and the adaptive laws of parameters are developed. The controller is simple and systemic, no parameters of the slave system are included in the controller, and, for some specific error systems, the controller can be simplified ulteriorly. New chaotic and a new hyper-chaotic systems with uncertain parameters are taken as the examples to show the effectiveness of the proposed adaptive synchronization method.  相似文献   

3.
This paper proposes a novel color image cryptosystem based on synchronization of two different six-dimensional hyperchaotic systems. In the transmitter end, we apply the drive system to generate the diffusion matrices and scrambling ones, which are used to change the image pixel value and position, respectively. Thus the ciphered image is obtained. In the receiver, synchronization of two nonidentical hyperchaotic systems can be achieved by designing the appropriate controllers. The response system is employed to yield the corresponding diffusion matrices and scrambling ones using the same generation method in the encryption algorithm. Then the cipher-image can be decrypted by the decryption algorithm, which is similar to that of the encryption process but in the reversed order. The experimental results show that the presented image cryptosystem has high security and can resist noise and crop attacks.  相似文献   

4.
This paper deals with a synchronization scheme for two fractional chaotic systems which is applied in image encryption. Based on Pecora and Carroll (PC) synchronization, fractional-order Lorenz-like system forms a master–slave configuration, and the sufficient conditions are derived to realize synchronization between these two systems via the Laplace transformation theory. An image encryption algorithm is introduced where the original image is encoded by a nonlinear function of a fractional chaotic state. Simulation results show that the original image is well masked in the cipher texts and recovered successfully through chaotic signals. Further, the cryptanalysis is conducted in detail through histogram, information entropy, key space and sensitivity to verify the high security.  相似文献   

5.
By using sequences generated from fractional-order hyperchaotic systems, a color image encryption scheme is investigated. Firstly, a plain image, which is known to users in advance, is chosen as a secret key to confuse the original image. Then, the confused image is encrypted by the sequences generated from the fractional-order hyperchaotic systems. With this simple encryption method, we can get an encrypted image that is fully scrambled and diused. For chaos-based image cryptosystems, this encryption scheme enhances the security and improves the eectiveness. Furthermore, the cryptosystem resists the dierential attack. Experiments show that the algorithm is suitable for image encryption, and some statistical tests are provided to show the high security in the end  相似文献   

6.
研究了具有未知参数和外界扰动的多个混沌系统之间的双路组合函数投影同步问题.首先给出了由四个混沌驱动系统和两个混沌响应系统组成的双路组合函数投影同步系统的定义,然后以Lyapunov稳定性理论和不等式变换方法为分析依据,设计了鲁棒自适应控制器和参数自适应律,使得两路同步系统中的响应系统和驱动系统按照相应的函数比例因子矩阵实现同步,并有效克服未知有界干扰和未知参数的影响.相应的理论分析和数值仿真证明了该同步方案的可行性和有效性.  相似文献   

7.
Within the drive-response configuration, this paper considers the synchronization of uncertain chaotic systems based on observers and chaos-based secure communication. Even if there are unknown disturbances and parameters in the drive system, a robust adaptive observer can be used as response system to realize chaotic synchronization. The proposed method is then applied to secure communication. The transmitter is constructed by injecting the information into the drive system with proper manner and one of the transmitting signal is the sum of one of the output and the information signal. The Lur’e chaotic system is considered as an illustrative example to demonstrate the effectiveness of the proposed approaches.  相似文献   

8.
In this paper, a novel projective synchronization scheme called adaptive generalized function projective lag synchronization (AGFPLS) is proposed. In the AGFPLS method, the states of two different chaotic systems with fully uncertain parameters are asymptotically lag synchronized up to a desired scaling function matrix. By means of the Lyapunov stability theory, an adaptive controller with corresponding parameter update rule is designed for achieving AGFPLS between two diverse chaotic systems and estimating the unknown parameters. This technique is employed to realize AGFPLS between uncertain Lü chaotic system and uncertain Liu chaotic system, and between Chen hyperchaotic system and Lorenz hyperchaotic system with fully uncertain parameters, respectively. Furthermore, AGFPLS between two different uncertain chaotic systems can still be achieved effectively with the existence of noise perturbation. The corresponding numerical simulations are performed to demonstrate the validity and robustness of the presented synchronization method.  相似文献   

9.
This paper mainly investigates adaptive generalized function projective synchronization of two different uncertain chaotic systems, which is a further extension of many existing projection synchronization schemes, such as modified projection synchronization, function projective synchronization and so on. On the basis of Lyapunov stability theory, an adaptive controller for the synchronization of two different chaotic systems is designed, and some parameter update laws for estimating the unknown parameters of the systems are also gained. This technique is applied to achieve synchronization between Lorenz and Rössler chaotic systems. The numerical simulations demonstrate the validity and feasibility of the proposed method.  相似文献   

10.
A novel image encryption scheme based on spatial chaos map   总被引:1,自引:0,他引:1  
In recent years, the chaos-based cryptographic algorithms have suggested some new and efficient ways to develop secure image encryption techniques, but the drawbacks of small key space and weak security in one-dimensional chaotic cryptosystems are obvious. In this paper, spatial chaos system are used for high degree security image encryption while its speed is acceptable. The proposed algorithm is described in detail. The basic idea is to encrypt the image in space with spatial chaos map pixel by pixel, and then the pixels are confused in multiple directions of space. Using this method one cycle, the image becomes indistinguishable in space due to inherent properties of spatial chaotic systems. Several experimental results, key sensitivity tests, key space analysis, and statistical analysis show that the approach for image cryptosystems provides an efficient and secure way for real time image encryption and transmission from the cryptographic viewpoint.  相似文献   

11.
The present article aims to study the projective synchronization between two identical and non?identical time?delayed chaotic systems with fully unknown parameters. Here the asymptotical and global synchronization are achieved by means of adaptive control approach based on Lyapunov–Krasovskii functional theory. The proposed technique is successfully applied to investigate the projective synchronization for the pairs of time?delayed chaotic systems amongst advanced Lorenz system as drive system with multiple delay Rössler system and time?delayed Chua's oscillator as response system. An adaptive controller and parameter update laws for unknown parameters are designed so that the drive system is controlled to be the response system. Numerical simulation results, depicted graphically, are carried out using Runge–Kutta Method for delay?differential equations, showing that the design of controller and the adaptive parameter laws are very effective and reliable and can be applied for synchronization of time?delayed chaotic systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
This paper studies the synchronization of the unified chaotic system via optimal linear feedback control and the potential use of chaos in cryptography, through the presentation of a chaos-based algorithm for encryption.  相似文献   

13.
In this paper, a secure communication scheme based on chaotic modulation is proposed using a reversible process and a robust controller with efficient cost and complexity to synchronize two different chaotic systems. In the controller design, a sliding mode control with an adaptive rule is used for non-linear inputs. The adaptive rule is applied to ensure the synchronization when uncertainties, non-modeled dynamics or external distortions are at work. The message signal is recovered at the receiver using a recursive process at the end. The effectiveness of the proposed algorithm is confirmed via the simulation results for the synchronization of the transmitted signal modulated by Chen chaotic system at the transmitter and Genesio chaotic system at the receiver, and those for the information recovery process.  相似文献   

14.
研究了分数阶双指数混沌系统的自适应滑模同步问题.通过设计滑模函数和控制器,构造了平方Lyapunov函数进行稳定性分析.利用Barbalat引理证明了同步误差渐近趋于零,获得了系统取得自适应滑模同步的充分条件.数值仿真结果表明:选取适当的控制器及与滑模函数,分数阶双指数混沌系统取得自适应滑模同步.  相似文献   

15.
This paper addresses the problem of global finite-time synchronization of two different dimensional chaotic systems. Firstly, the definition of global finite-time synchronization of different dimensional chaotic systems are introduced. Based on the finite-time stability methods, the controller is designed such that the chaotic systems are globally synchronized in a finite time. Then, some uncertain parameters are adopted in the chaotic systems, new control law and dynamical parameter estimation are proposed to guarantee that the global finite-time synchronization can be obtained. By considering a dynamical parameter designed in the controller, the adaptive updated controller is also designed to achieve the desired results. At last, the results of two different dimensional chaotic systems are also extended to two different dimensional networked chaotic systems. Finally, three numerical examples are given to verify the validity of the proposed methods.  相似文献   

16.
针对一类含有不确定项的混沌系统,设计了广义同步响应系统,利用系统稳定性理论设计了自适应广义同步控制器及自适应率,实现了驱动系统和所设计的响应系统广义同步,所设计的控制策略对外界干扰有较强的鲁棒性,而且通过引入加速因子,可任意配置同步响应速度,具有较高的应用价值,理论分析及仿真结果验证了该方法的有效性。  相似文献   

17.
In this paper, new adaptive synchronous criteria for a general class of n-dimensional non-autonomous chaotic systems with linear and nonlinear feedback controllers are derived. By suitable separation between linear and nonlinear terms of the chaotic system, the phenomenon of stable chaotic synchronization can be achieved using an appropriate adaptive controller of feedback signals. This method can also be generalized to a form for chaotic synchronization or hyper-chaotic synchronization. Based on stability theory on non-autonomous chaotic systems, some simple yet less conservative criteria for global asymptotic synchronization of the autonomous and non-autonomous chaotic systems are derived analytically. Furthermore, the results are applied to some typical chaotic systems such as the Duffing oscillators and the unified chaotic systems, and the numerical simulations are given to verify and also visualize the theoretical results.  相似文献   

18.
We consider the coupling of two uncertain dynamical systems with different orders using an adaptive feedback linearization controller to achieve reduced-order synchronization between the two systems. Reduced-order synchronization is the problem of synchronization of a slave system with projection of a master system. The synchronization scheme is an exponential linearizing-like controller and a state/uncertainty estimator. As an illustrative example, we show that the dynamical evolution of a second-order driven oscillator can be synchronized with the canonical projection of a fourth-order chaotic system. Simulation results indicated that the proposed control scheme can significantly improve the synchronousness performance. These promising results justify the usefulness of the proposed output feedback controller in the application of secure communication.  相似文献   

19.
This paper discusses the topic of using chaotic models for constructing secure communication systems. It investigates three different case studies that use encryption/decryption functions with varying degrees of complexity and performance. The first case study explores synchronization of identical chaotic systems, which is considered the most crucial step when developing chaos-based secure communication systems. It proposes a fast mechanism for synchronizing the transmitter and the receiver that is based on the drive-response approach. The superiority and causality of this mechanism is demonstrated via contrasting its performance and practical implementation against that of the traditional method of Pecora and Carroll. The second case study explores the use of an improved cryptography method for improving the scrambling of the transmitted signals. The improvement is based on using both the transmitter states and parameters for performing the encryption. The security analysis of this method is analyzed, highlighting its advantages and limitation, via simulating intruder attacks to the communication channel. Finally, the third case study augments a parameter update law to the previous two designs such that the encryption method is more robust. It uses a decoupling technique for which the synchronization process is completely isolated from the parameter identification algorithm. The Lorenz system was used to exemplify all the suggested techniques, and the transmission of both analog and digital signals was explored, while investigating various techniques to optimize the performance of the proposed systems.  相似文献   

20.
This paper addresses the problem of projective synchronization of chaotic systems and switched chaotic systems by adaptive control methods. First, a necessary and sufficient condition is proposed to show how many state variables can realize projective synchronization under a linear feedback controller for the chaotic systems. Then, accordingly, a new algorithm is given to select all state variables that can realize projective synchronization. Furthermore, according to the results of the projective synchronization of chaotic systems, the problem of projective synchronization of the switched chaotic systems comprised by the unified chaotic systems is investigated, and an adaptive global linear feedback controller with only one input channel is designed, which can realize the projective synchronization under the arbitrary switching law. It is worth mentioning that the proposed method can also realize complete synchronization of the switched chaotic systems. Finally, the numerical simulation results verify the correctness and effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号