首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let X be a continuum. The n-fold hyperspace Cn(X), n<∞, is the space of all nonempty compact subsets of X with the Hausdorff metric. Four types of local connectivity at points of Cn(X) are investigated: connected im kleinen, locally connected, arcwise connected im kleinen and locally arcwise connected. Characterizations, as well as necessary or sufficient conditions, are obtained for Cn(X) to have one or another of the local connectivity properties at a given point. Several results involve the property of Kelley or C*-smoothness. Some new results are obtained for C(X), the space of subcontinua of X. A class of continua X is given for which Cn(X) is connected im kleinen only at subcontinua of X and for which any two such subcontinua must intersect.  相似文献   

2.
Let S be the class of all spaces, each of which is homeomorphic to a stationary subset of a regular uncountable cardinal (depending on the space). In this paper, we prove the following result: The product X×C of a monotonically normal space X and a compact space C is normal if and only if S×C is normal for each closed subspace S in X belonging to S. As a corollary, we obtain the following result: If the product of a monotonically normal space and a compact space is orthocompact, then it is normal.  相似文献   

3.
We study compact spaces which are obtained from metric compacta by iterating the operation of inverse limit of continuous sequences of retractions. This class, denoted by R, has been introduced in [M. Burke, W. Kubi?, S. Todor?evi?, Kadec norms on spaces of continuous functions, http://arxiv.org/abs/math.FA/0312013]. Allowing continuous images in the definition of class R, one obtains a strictly larger class, which we denote by RC. We show that every space in class RC is either Corson compact or else contains a copy of the ordinal segment ω1+1. This improves a result of Kalenda from [O. Kalenda, Embedding of the ordinal segment [0,ω1] into continuous images of Valdivia compacta, Comment. Math. Univ. Carolin. 40 (4) (1999) 777-783], where the same was proved for the class of continuous images of Valdivia compacta. We prove that spaces in class R do not contain cutting P-points (see the definition below), which provides a tool for finding spaces in RC?R. Finally, we study linearly ordered spaces in class RC. We prove that scattered linearly ordered compacta belong to RC and we characterize those ones which belong to R. We show that there are only 5 types (up to order isomorphism) of connected linearly ordered spaces in class R and all of them are Valdivia compact. Finally, we find a universal pre-image for the class of all linearly ordered Valdivia compacta.  相似文献   

4.
A metric space X is straight if for each finite cover of X by closed sets, and for each real valued function f on X, if f is uniformly continuous on each set of the cover, then f is uniformly continuous on the whole of X. The straight spaces have been studied in [A. Berarducci, D. Dikranjan, J. Pelant, An additivity theorem for uniformly continuous functions, Topology and its Applications 146-147 (2005) 339-352], which contains characterization of the straight spaces within the class of the locally connected spaces (they are the uniformly locally connected ones) and the class of the totally disconnected spaces (they coincide with the totally disconnected Atsuji spaces). We show that the completion of a straight space is straight and we characterize the dense straight subspaces of a straight space. In order to clarify further the relation between straightness and the level of local connectedness of the space we introduce two more intermediate properties between straightness and uniform local connectedness and we give various examples to distinguish them. One of these properties coincides with straightness for complete spaces and provides in this way a useful characterization of complete straight spaces in terms of the behaviour of the quasi-components of the space.  相似文献   

5.
A metric space X is straight if for each finite cover of X by closed sets, and for each real valued function f on X, if f is uniformly continuous on each set of the cover, then f is uniformly continuous on the whole of X. A locally connected space is straight iff it is uniformly locally connected (ULC). It is easily seen that ULC spaces are stable under finite products. On the other hand the product of two straight spaces is not necessarily straight. We prove that the product X×Y of two metric spaces is straight if and only if both X and Y are straight and one of the following conditions holds:
(a)
both X and Y are precompact;
(b)
both X and Y are locally connected;
(c)
one of the spaces is both precompact and locally connected.
In particular, when X satisfies (c), the product X×Z is straight for every straight space Z.Finally, we characterize when infinite products of metric spaces are ULC and we completely solve the problem of straightness of infinite products of ULC spaces.  相似文献   

6.
All spaces are assumed to be Tychonoff. A space X is called projectively P (where P is a topological property) if every continuous second countable image of X is P. Characterizations of projectively Menger spaces X in terms of continuous mappings , of Menger base property with respect to separable pseudometrics and a selection principle restricted to countable covers by cozero sets are given. If all finite powers of X are projectively Menger, then all countable subspaces of Cp(X) have countable fan tightness. The class of projectively Menger spaces contains all Menger spaces as well as all σ-pseudocompact spaces, and all spaces of cardinality less than d. Projective versions of Hurewicz, Rothberger and other selection principles satisfy properties similar to the properties of projectively Menger spaces, as well as some specific properties. Thus, X is projectively Hurewicz iff Cp(X) has the Monotonic Sequence Selection Property in the sense of Scheepers; βX is Rothberger iff X is pseudocompact and projectively Rothberger. Embeddability of the countable fan space Vω into Cp(X) or Cp(X,2) is characterized in terms of projective properties of X.  相似文献   

7.
It is shown that if H is a connected, locally contractible, separable, topologically complete metric space with the property that mappings of separable metric spaces into H are approximable by imbeddings (in particular, if H is Hilbert space), then every sigma-compact, nowhere locally compact metric space can be densely imbedded in H.  相似文献   

8.
The main results of the paper are as follows: covering characterizations of wQN-spaces, covering characterizations of QN-spaces and a theorem saying that Cp(X) has the Arkhangel'ski?ˇ property (α1) provided that X is a QN-space. The latter statement solves a problem posed by M. Scheepers [M. Scheepers, Cp(X) and Arhangel'ski?ˇ's αi-spaces, Topology Appl. 89 (1998) 265-275] and for Tychonoff spaces was independently proved by M. Sakai [M. Sakai, The sequence selection properties of Cp(X), Preprint, April 25, 2006]. As the most interesting result we consider the equivalence that a normal topological space X is a wQN-space if and only if X has the property S1(Γshr,Γ). Moreover we show that X is a QN-space if and only if Cp(X) has the property (α0), and for perfectly normal spaces, if and only if X has the covering property (β3).  相似文献   

9.
Various local connectedness and compactness properties of topological spaces are characterized by higher degrees of distributivity for their lattices of open (or closed) sets, and conversely. For example, those topological spaces for which not only the lattice of open sets but also that of closed sets is a frame, are described by the existence of web neighborhood bases, where webs are certain specific path-connected sets. Such spaces are called web spaces. The even better linked wide web spaces are characterized by F-distributivity of their topologies, and the worldwide web spaces (or C-spaces) by complete distributivity of their topologies. Similarly, strongly locally connected spaces and locally hypercompact spaces are characterized by suitable infinite distributive laws. The web space concepts are also viewed as natural extensions of spaces that are semilattices with respect to the specialization order and have continuous (unary, binary or infinitary) semilattice operations.  相似文献   

10.
We introduce the classes of monotonically monolithic and strongly monotonically monolithic spaces. They turn out to be reasonably large and with some nice categorical properties. We prove, in particular, that any strongly monotonically monolithic countably compact space is metrizable and any monotonically monolithic space is a hereditary D-space. We show that some classes of monolithic spaces which were earlier proved to be contained in the class of D-spaces are monotonically monolithic. In particular, Cp(X) is monotonically monolithic for any Lindelöf Σ-space X. This gives a broader view of the results of Buzyakova and Gruenhage on hereditary D-property in function spaces.  相似文献   

11.
We construct connected, locally connected, almost regular, countable, Urysohn spaces. This answers a problem of G.X. Ritter. We show that there are 2c such non-homeomorphic spaces. We also show that there are 2c non-homeomorphic spaces which are further rigid. We discuss the group of homeomorphisms of such spaces.The following question was raised by G.X. Ritter: Does there exist a countable connected locally connected Urysohn space which is almost regular? We answer this question in the affirmative and in fact, show that not only are there as many as 2c such spaces but that there are just as many rigid spaces with the same properties. Furthermore we show that every countable Urysohn space is a subspace of such a space. We also prove that every countable group is isomorphic to the group of autohomeomorphisms of some connected locally connected almost regular Urysohn space. Examples are given of groups of order c which can be represented in this manner.  相似文献   

12.
F.B. Jones has proved that for many different topological properties P if there exists a non-normal space with property P then there exists a non-completely regular space Y with property P. In this paper we study the topological structure of the space Y and we characterize the topological spaces with a similar structure to that possessed by Y.  相似文献   

13.
The following results are obtained.
-
An open neighbornet U of X has a closed discrete kernel if X has an almost thick cover by countably U-close sets.
-
Every hereditarily thickly covered space is aD and linearly D.
-
Every t-metrizable space is a D-space.
-
X is a D-space if X has a cover {Xα:α<λ} by D-subspaces such that, for each β<λ, the set ?{Xα:α<β} is closed.
  相似文献   

14.
We introduce a new cardinal invariant, core of a space, defined for any locally compact Hausdorff space X and denoted by cor(X). Locally compact spaces of countable core generalize locally compact σ-compact spaces in a way that is slightly exotic, but still quite natural. We show in Section 1 that under a broad range of conditions locally compact spaces of countable core must be σ-compact. In particular, normal locally compact spaces of countable core and realcompact locally compact spaces of countable core are σ-compact. Perfect mappings preserve the class of spaces of countable core in both directions (Section 2). The Alexandroff compactification aX is weakly first countable at the Alexandroff point a if and only if cor(X)=ω (Section 3). Two examples of non-σ-compact locally compact spaces of countable core are discussed in Section 3. We also extend the well-known theorem of Alexandroff and Urysohn on the cardinality of perfectly normal compacta to compacta satisfying a weak version of perfect normality. Several open problems are formulated.  相似文献   

15.
We identify some remnants of normality and call them rudimentary normality, generalize the concept of submetacompact spaces to that of a weakly subparacompact space and that of a weakly? subparacompact space, and make a simultaneous generalization of collectionwise normality and screenability with the introduction of what is to be called collectionwise σ-normality. With these weak properties, we show that,1) on weakly subparacompact spaces, countable compactness = compactness, ω1-compactness = Lindelöfness;2) on weakly subparacompact Hausdorff spaces with rudimentary normality, regularity = normality = countable paracompactness; and3) on weakly subparacompact regular T1-spaces with rudimentary normality, collectionwise σ-normality = screenability = collectionwise normality = paracompactness.The famous Normal Moore Space Conjecture is thus given an even more striking appearance and Worrell and Wicke?s factorization of paracompactness (over Hausdorff spaces) along with Krajewski?s are combined and strengthened. The methodology extends itself to the factorization of paracompactness on locally compact, locally connected spaces in the manner of Gruenhage and on locally compact spaces in that of Tall, and to the factorization of subparacompactness and metacompactness in the genre of Katuta, Chaber, Junnila and Price and Smith and that of Boone, improving all of them.  相似文献   

16.
We show in a direct way that a space is D if it is a finite union of subparacompact scattered spaces. This result cannot be extended to countable unions, since it is known that there is a regular space which is a countable union of paracompact scattered spaces and which is not D. Nevertheless, we show that every space which is the union of countably many regular Lindelöf C-scattered spaces has the D-property. Also, we prove that a space is D if it is a locally finite union of regular Lindelöf C-scattered spaces.  相似文献   

17.
We explore the relation between two general kinds of separation properties. The first kind, which includes the classical separation properties of regularity and normality, has to do with expanding two disjoint closed sets, or dense subsets of each, to disjoint open sets. The second kind has to do with expanding discrete collections of points, or full-cardinality subcollections thereof, to disjoint or discrete collections of open sets. The properties of being collectionwise Hausdorff (cwH), of being strongly cwH, and of being wD(1), fall into the second category. We study the effect on other separation properties if these properties are assumed to hold hereditarily. In the case of scattered spaces, we show that (a) the hereditarily cwH ones are α-normal and (b) a regular one is hereditarily strongly cwH iff it is hereditarily cwH and hereditarily β-normal. Examples are given in ZFC of (1) hereditarily strongly cwH spaces which fail to be regular, including one that also fails to be α-normal; (2) hereditarily strongly cwH regular spaces which fail to be normal and even, in one case, to be β-normal; (3) hereditarily cwH spaces which fail to be α-normal. We characterize those regular spaces X such that X×(ω+1) is hereditarily strongly cwH and, as a corollary, obtain a consistent example of a locally compact, first countable, hereditarily strongly cwH, non-normal space. The ZFC-independence of several statements involving the hereditarily wD(1) property is established. In particular, several purely topological statements involving this property are shown to be equivalent to b=ω1.  相似文献   

18.
Real dicompactifications and dicompactifications of a ditopological texture space are defined and studied.Section 2 considers nearly plain extensions of a ditopological texture space (S,S,τ,κ). Spaces that possess a nearly plain extension are shown to have a property, called here almost plainness, that is weaker than that of near plainness, but which shares with near plainness the existence of an associated plain space (Sp,Sp,τp,κp). Some properties of the class of almost plain ditopological texture spaces are established, a notion of canonical nearly plain extension of an almost plain ditopological texture space, projective and injective pre-orderings and the concept of isomorphism on such canonical nearly plain extensions are defined.In Section 3 the notion of nearly plain extension is specialized to that of real dicompactification and dicompactification, and the spaces that have such extensions are characterized. Working in terms of a specific representation of the canonical real dicompactifications and dicompactifications of a completely biregular bi-T2 almost plain ditopological space, the interrelation between sub-T-lattices of the T-lattice of ω-preserving bicontinuous real mappings on the associated plain space and the real dicompactifications and dicompactifications are investigated. In particular generalizations of the Hewitt realcompactification and Stone-?ech compactification are obtained, and shown to be reflectors for the appropriate categories.  相似文献   

19.
We continue the study of Selectively Separable (SS) and, a game-theoretic strengthening, strategically selectively separable spaces (SS+) (see Barman, Dow (2011) [1]). The motivation for studying SS+ is that it is a property possessed by all separable subsets of Cp(X) for each σ-compact space X. We prove that the winning strategy for countable SS+ spaces can be chosen to be Markov. We introduce the notion of being compactlike for a collection of open sets in a topological space and with the help of this notion we prove that there are two countable SS+ spaces such that the union fails to be SS+, which contrasts the known result about SS spaces. We also prove that the product of two countable SS+ spaces is again countable SS+. One of the main results in this paper is that the proper forcing axiom, PFA, implies that the product of two countable Fréchet spaces is SS, a statement that was shown in Barman, Dow (2011) [1] to consistently fail. An auxiliary result is that it is consistent with the negation of CH that all separable Fréchet spaces have π-weight at most ω1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号