首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the initial-boundary value problem for ?t2u(t,x)+A(t)u(t,x)+B(t)?tu(t,x)=f(t,x) on [0,T]×Ω(Ω??n) with a homogeneous Dirichlet boundary condition; here A(t) denotes a family of uniformly strongly elliptic operators of order 2m, B(t) denotes a family of spatial differential operators of order less than or equal to m, and u is a scalar function. We prove the existence of a unique strong solution u. Furthermore, an energy estimate for u is given.  相似文献   

2.
The system x = A (t, x)x + B(t, x)u, where A(t, x) and B(t, x) are, respectively, n × n and n × m (m<n) continuous matrices whose elements are uniformly bounded for t ≽ t 0 and x ∈ ℝ n , is considered. It is assumed that the system has relative degree q = n - m + 1, and the determinant of the matrix composed of the last m rows of the matrix B(t, x) is bounded away from zero for t ≽ t 0 and x ∈ ℝ n . A special quadratic Lyapunov function with constant positive definite coefficient matrix H depending only on the range of variation of the coefficients in the matrices A(t, x) and B(t, x) is constructed and applied to obtain a control u(t, x) =7n ~B⋆ (t, x)H depending on a scalar parameter 7n under which the system is globally asymptotically stable provided that it is closed. Here, ~B (t, x) is the scalar matrix obtained from the matrix B(t, x) by setting the first n - m rows to zero.  相似文献   

3.
As shown by an example, the integral function f : n , defined by f(x) = a b[B(x, t)]+ g(t) dt, may not be a strongly semismooth function, even if g(t) 1 and B is a quadratic polynomial with respect to t and infinitely many times smooth with respect to x. We show that f is a strongly semismooth function if g is continuous and B is affine with respect to t and strongly semismooth with respect to x, i.e., B(x, t) = u(x)t + v(x), where u and v are two strongly semismooth functions in n . We also show that f is not a piecewise smooth function if u and v are two linearly independent linear functions, g is continuous and g 0 in [a, b], and n 2. We apply the first result to the edge convex minimum norm network interpolation problem, which is a two-dimensional interpolation problem.  相似文献   

4.
For the equation K(t)u xx + u tt b 2 K(t)u = 0 in the rectangular domain D = “(x, t)‖ 0 < x < 1, −α < t < β”, where K(t) = (sgnt)|t| m , m > 0, and b > 0, α > 0, and β > 0 are given real numbers, we use the spectral method to obtain necessary and sufficient conditions for the unique solvability of the boundary value problem u(0, t) = u(1, t), u x (0, t) = u x (1, t), −αtβ, u(x, β) = φ(x), u(x,−α) = ψ(x), 0 ≤ x ≤ 1.  相似文献   

5.
We consider solutions of the singular diffusion equation t, = (um?1 ux)x, m ≦ 0, associated with the flux boundary condition limx→?∞ (um?1ux)x = λ > 0. The evolutions defined by this problem depend on both m and λ. We prove existence and stability of traveling wave solutions, parameterized by λ. Each traveling wave is stable in its appropriate evolution. These traveling waves are in L1 for ?1 < m ≦ 0, but have non-integrable tails for m ≦ ?1. We also show that these traveling waves are the same as those for the scalar conservation law ut = ?[f(u)]x + uxx for a particular nonlinear convection term f(u) = f(u;m, λ). © 1993 John Wiley & Sons, Inc.  相似文献   

6.
Let p(x) be a polynomial of degree n?2 with coefficients in a subfield K of the complex numbers. For each natural number m?2, let Lm(x) be the m×m lower triangular matrix whose diagonal entries are p(x) and for each j=1,…,m−1, its jth subdiagonal entries are . For i=1,2, let Lmi)(x) be the matrix obtained from Lm(x) by deleting its first i rows and its last i columns. L1(1)(x)≡1. Then, the function Bm(x)=xp(x) defines a fixed-point iteration function having mth order convergence rate for simple roots of p(x). For m=2 and 3, Bm(x) coincides with Newton's and Halley's, respectively. The function Bm(x) is a member of S(m,m+n−2), where for any M?m, S(m,M) is the set of all rational iteration functions g(x) ∈ K(x) such that for all roots θ of p(x), then g(x)=θ+∑i=mMγi(x)(θ−x)i, with γi(x) ∈ K(x) and well-defined at any simple root θ. Given gS(m,M), and a simple root θ of p(x), gi(θ)=0, i=1, …, m−1 and the asymptotic constant of convergence of the corresponding fixed-point iteration is . For Bm(x) we obtain . If all roots of p(x) are simple, Bm(x) is the unique member of S(m,m + n − 2). By making use of the identity , we arrive at two recursive formulas for constructing iteration functions within the S(m,M) family. In particular, the family of Bm(x) can be generated using one of these formulas. Moreover, the other formula gives a simple scheme for constructing a family of iteration functions credited to Euler as well as Schröder, whose mth order member belongs to S(m,mn), m>2. The iteration functions within S(m,M) can be extended to any arbitrary smooth function f, with the uniform replacement of p(j) with f(j) in g as well as in γm(θ).  相似文献   

7.
We introduce a method for generating (Wx,T(m,s),mx,T(m,s),Mx,T(m,s))(W_{x,T}^{(\mu,\sigma)},m_{x,T}^{(\mu,\sigma)},M_{x,T}^{(\mu,\sigma)}) , where Wx,T(m,s)W_{x,T}^{(\mu,\sigma)} denotes the final value of a Brownian motion starting in x with drift μ and volatility σ at some final time T, mx,T(m,s) = inf0 £ tTWx,t(m,s)m_{x,T}^{(\mu,\sigma)} = {\rm inf}_{0\leq t \leq T}W_{x,t}^{(\mu,\sigma)} and Mx,T(m,s) = sup0 £ tT Wx,t(m,s)M_{x,T}^{(\mu,\sigma)} = {\rm sup}_{0\leq t \leq T} W_{x,t}^{(\mu,\sigma)} . By using the trivariate distribution of (Wx,T(m,s),mx,T(m,s),Mx,T(m,s))(W_{x,T}^{(\mu,\sigma)},m_{x,T}^{(\mu,\sigma)},M_{x,T}^{(\mu,\sigma)}) , we obtain a fast method which is unaffected by the well-known random walk approximation errors. The method is extended to jump-diffusion models. As sample applications we include Monte Carlo pricing methods for European double barrier knock-out calls with continuous reset conditions under both models. The proposed methods feature simple importance sampling techniques for variance reduction.  相似文献   

8.
We study the large–time behavior of the second moment (energy) for the flow of a gas in a N-dimensional porous medium with initial density v0(x) 0. The density v(x, t) satisfies the nonlinear degenerate parabolic equation vt = vm where m > 1 is a physical constant. Assuming that for some > 0, we prove that E(t) behaves asymptotically, as t , like the energy EB(t) of the Barenblatt-Pattle solution B(|x|, t). This is shown by proving that E(t)/EB(t) converges to 1 at the (optimal) rate t–2/(N(m-1)+2). A simple corollary of this result is a central limit theorem for the scaled solution E(t)N/2v(E(t)1/2x, t).  相似文献   

9.
Let X(t), 0≦t≦ 1, be a measurable Gaussian process with mean 0 and variance σ2(t) = EX2(t). Suppose that σ2(t) assumes a unique maximum value σ2 at a point τ [0,1]. Define Lu = mes(t: 0≦t≦1, X(t)>)Under appropriate conditions, there exists a function fσ(u) such that fσ(u) → ∞ for u ∞, and The function fσ and the constant δ > 0 are determined by the behavior of the function R(x) = mes(t: 0 ≦ t ≦ 1, σ2 - σ2(t) ≦ x) for x > 0.  相似文献   

10.
Consider the Navier-Stokes equations in Ω×(0,T), where Ω is a domain in R3. We show that there is an absolute constant ε0 such that ever, y weak solution u with the property that Suptε(a,b)|u(t)|L(D)≤ε0 is necessarily of class C in the space-time variables on any compact suhset of D × (a,b) , where D?? and 0 a<b<T. As an application. we prove that if the weak solution u behaves around (xo, to) εΩ×(o,T) 1ike u(x, t) = o(|x - xo|-1) as xx 0 uniforlnly in t in some neighbourliood of to, then (xo,to) is actually a removable singularity of u.  相似文献   

11.
Let f(x), x ∈ ?M, M ≥ 1, be a density function on ?M, and X1, …., Xn a sample of independent random vectors with this common density. For a rectangle B in ?M, suppose that the X's are censored outside B, that is, the value Xk is observed only if XkB. The restriction of f(x) to xB is clearly estimable by established methods on the basis of the censored observations. The purpose of this paper is to show how to extrapolate a particular estimator, based on the censored sample, from the rectangle B to a specified rectangle C containing B. The results are stated explicitly for M = 1, 2, and are directly extendible to M ≥ 3. For M = 2, the extrapolation from the rectangle B to the rectangle C is extended to the case where B and C are triangles. This is done by means of an elementary mapping of the positive quarter‐plane onto the strip {(u, v): 0 ≤ u ≤ 1, v > 0}. This particular extrapolation is applied to the estimation of the survival distribution based on censored observations in clinical trials. It represents a generalization of a method proposed in 2001 by the author [2]. The extrapolator has the following form: For m ≥ 1 and n ≥ 1, let Km, n(x) be the classical kernel estimator of f(x), xB, based on the orthonormal Legendre polynomial kernel of degree m and a sample of n observed vectors censored outside B. The main result, stated in the cases M = 1, 2, is an explicit bound for E|Km, n(x) ? f(x)| for xC, which represents the expected absolute error of extrapolation to C. It is shown that the extrapolator is a consistent estimator of f(x), xC, if f is sufficiently smooth and if m and n both tend to ∞ in a way that n increases sufficiently rapidly relative to m. © 2006 Wiley Periodicals, Inc.  相似文献   

12.
We consider the periodic boundary-value problem u tt u xx = g(x, t), u(0, t) = u(π, t) = 0, u(x, t + ω) = u(x, t). By representing a solution of this problem in the form u(x, t) = u 0(x, t) + ũ(x, t), where u 0(x, t) is a solution of the corresponding homogeneous problem and ũ(x, t) is the exact solution of the inhomogeneous equation such that ũ(x, t + ω) u x = ũ(x, t), we obtain conditions for the solvability of the inhomogeneous periodic boundary-value problem for certain values of the period ω. We show that the relation obtained for a solution includes known results established earlier. __________ Translated from Ukrains'kyi Matematychnyi Zhurnal, Vol. 57, No. 7, pp. 912–921, July, 2005.  相似文献   

13.
A symmetric random evolution X(t) = (X 1 (t), …, X m (t)) controlled by a homogeneous Poisson process with parameter λ > 0 is considered in the Euclidean space ℝ m , m ≥ 2. We obtain an asymptotic relation for the transition density p(x, t), t > 0, of the process X(t) as λ → 0 and describe the behavior of p(x, t) near the boundary of the diffusion domain in spaces of different dimensions. Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 60, No. 12, pp. 1631 – 1641, December, 2008.  相似文献   

14.
Some parallel results of Gross' paper (Potential theory on Hilbert space, J. Functional Analysis1 (1967), 123–181) are obtained for Uhlenbeck-Ornstein process U(t) in an abstract Wiener space (H, B, i). Generalized number operator N is defined by Nf(x) = ?lim∈←0{E[f(Uξ))] ? f(x)}/Eξ, where τx? is the first exit time of U(t) starting at x from the ball of radius ? with center x. It is shown that Nf(x) = ?trace D2f(x)+〈Df(x),x〉 for a large class of functions f. Let rt(x, dy) be the transition probabilities of U(t). The λ-potential Gλf, λ > 0, and normalized potential Rf of f are defined by Gλf(X) = ∫0e?λtrtf(x) dt and Rf(x) = ∫0 [rtf(x) ? rtf(0)] dt. It is shown that if f is a bounded Lip-1 function then trace D2Gλf(x) ? 〈DGλf(x), x〉 = ?f(x) + λGλf(x) and trace D2Rf(x) ? 〈DRf(x), x〉 = ?f(x) + ∫Bf(y)p1(dy), where p1 is the Wiener measure in B with parameter 1. Some approximation theorems are also proved.  相似文献   

15.
We consider the class of equations ut=f(uxx, ux, u) under the restriction that for all a,b,c. We first consider this equation over the unbounded domain ? ∞ < x < + ∞, and we show that very nearly every bounded nonmonotonic solution of the form u(t, x)=?(x?ct) is unstable to all nonnegative and all nonpositive perturbations. We then extend these results to nonmonotonic plane wave solutions u(t, x, y)=?(x?ct) of ut = F(uxx, uxy, ux, uy, u). Finally, we consider the class of equations ut=f(uxx, ux, u) over the bounded domain 0 < x < 1 with the boundary conditions u(t, x)=A at x=0 and u(t, x)=B at x=1, and we find the stability of all steady solutions u(t, x)=?(x).  相似文献   

16.
We consider an Abel equation (*)y’=p(x)y 2 +q(x)y 3 withp(x), q(x) polynomials inx. A center condition for (*) (closely related to the classical center condition for polynomial vector fields on the plane) is thaty 0=y(0)≡y(1) for any solutiony(x) of (*). Folowing [7], we consider a parametric version of this condition: an equation (**)y’=p(x)y 2 +εq(x)y 3 p, q as above, ε ∈ ℂ, is said to have a parametric center, if for any ɛ and for any solutiony(ɛ,x) of (**)y(ɛ, 0)≡y(ɛ, 1).. We give another proof of the fact, shown in [6], that the parametric center condition implies vanishing of all the momentsm k (1), wherem k (x)=∫ 0 x pk (t)q(t)(dt),P(x)=∫ 0 x p(t)dt. We investigate the structure of zeroes ofm k (x) and generalize a “canonical representation” ofm k (x) given in [7]. On this base we prove in some additional cases a composition conjecture, stated in [6, 7] for a parametric center problem. The research of the first and the third author was supported by the Israel Science Foundation, Grant No. 101/95-1 and by the Minerva Foundation.  相似文献   

17.
We consider the nonnegative solutions to the nonlinear degenerate parabolic equation ut = (D(x, t)um − 1ux)xb(x, t)up with m > 1, 0 < p < 1, and positive D(x, t), b(x, t). After obtaining the uniqueness and Hölder regularity results, we investigate the dependence of such phenomena as extinction in finite time and instantaneous shrinking of the support on the behaviour of D(x, t) and b(x, t).  相似文献   

18.
In this note, we prove an ?‐regularity theorem for the Ricci flow. Let (Mn,g(t)) with t ? [?T,0] be a Ricci flow, and let Hx0(y,s) be the conjugate heat kernel centered at some point (x0,0) in the final time slice. By substituting Hx0(?,s) into Perelman's W‐functional, we obtain a monotone quantity Wx0(s) that we refer to as the pointed entropy. This satisfies Wx0(s) ≤ 0, and Wx0(s) = 0 if and only if (Mn,g(t)) is isometric to the trivial flow on Rn. Then our main theorem asserts the following: There exists ? > 0, depending only on T and on lower scalar curvature and μ‐entropy bounds for the initial slice (Mn,g(?T)) such that Wx0(s) ≥ ?? implies |Rm| ≤ r?2 on P? r(x0,0), where r2 ≡ |s| and Pρ(x,t) ≡ Bρ(x,t) × (t2,t] is our notation for parabolic balls. The main technical challenge of the theorem is to prove an effective Lipschitz bound in x for the s‐average of Wx(s). To accomplish this, we require a new log‐Sobolev inequality. Perelman's work implies that the metric measure spaces (Mn,g(t),dvolg(t)) satisfy a log‐Sobolev; we show that this is also true for the heat kernel weighted spaces (Mn,g(t),Hx0(?,t)dvolg(t)). Our log‐Sobolev constants for these weighted spaces are in fact universal and sharp. The weighted log‐Sobolev has other consequences as well, including certain average Gaussian upper bounds on the conjugate heat kernel. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
Given a sequence of real or complex coefficients ci and a sequence of distinct nodes ti in a compact interval T, we prove the divergence and the unbounded divergence on superdense sets in the space C(T) of the simple quadrature formulas ∝Tx(t)du(t) = Qn(x) + Rn(x) and ∝Tw(t)x(t)dt = Qn(x) + Rn(x), where Qn(x)=∑i=1mn cix(ti), ε C(T).The divergence (not certainly unbounded) for at most one continuous function of the first simple quadrature formula, with mn = n and u(t) = t, was established by P. J. Davis in 1953.  相似文献   

20.
For any −1<m<0, positive functions f, g and u0≥0, we prove that under some mild conditions on f, g and u0 as R the solution uR of the Dirichlet problem ut=(um/m)xx in (−R,R)×(0,), u(R,t)=(f(t)|m|R)1/m, u(−R,t)=(g(t)|m|R)1/m for all t>0, u(x,0)=u0(x) in (−R,R), converges uniformly on every compact subset of R×(0,T) to the solution of the equation ut=(um/m)xx in R×(0,T), u(x,0)=u0(x) in R, which satisfies some mass loss formula on (0,T) where T is the maximal time such that the solution u is positive. We also prove that the solution constructed is equal to the solution constructed in Hui (2007) [15] using approximation by solutions of the corresponding Neumann problem in bounded cylindrical domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号