首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
ANOTEONTHEBEHAVIOROFBLOW┐UPSOLUTIONSFORONE┐PHASESTEFANPROBLEMSZHUNINGAbstract.Inthispaper,thefolowingone-phaseStefanproblemis...  相似文献   

2.
In this paper we study the following problem: ut−Δu=−f(u) in Ω×(0, T)≡QT, ∂u ∂n=g(u) on ∂Ω×(0, T)≡ST, u(x, 0)=u0(x) in Ω , where Ω⊂ℝN is a smooth bounded domain, f and g are smooth functions which are positive when the argument is positive, and u0(x)>0 satisfies some smooth and compatibility conditions to guarantee the classical solution u(x, t) exists. We first obtain some existence and non-existence results for the corresponding elliptic problems. Then, we establish certain conditions for a finite time blow-up and global boundedness of the solutions of the time-dependent problem. Further, we analyse systems with same kind of boundary conditions and find some blow-up results. In the last section, we study the corresponding elliptic problems in one-dimensional domain. Our main method is the comparison principle and the construction of special forms of upper–lower solutions using related equations. © 1998 B. G. Teubner Stuttgart—John Wiley & Sons, Ltd.  相似文献   

3.
Numerical approximation of the solution of the Cauchy problem for the linear parabolic partial differential equation is considered. The problem: (p(x)ux)x ? q(x)u = p(x)ut, 0 < x < 1,0 < t? T; u(0, t) = ?1(t), 0 < t ? T; u(1,t) = ?2(t), 0 < t ? T; p(0) ux(0, t) = g(t), 0 < t0 ? t ? T, is ill-posed in the sense of Hadamard. Complex variable and Dirichlet series techniques are used to establish Hölder continuous dependence of the solution upon the data under the additional assumption of a known uniform bound for ¦ u(x, t)¦ when 0 ? x ? 1 and 0 ? t ? T. Numerical results are obtained for the problem where the data ?1, ?2 and g are known only approximately.  相似文献   

4.
In this paper, we consider the Cauchy problem: (ECP) ut−Δu+p(x)u=u(x,t)∫u2(y,t)/∣x−y∣dy; x∈ℝ3, t>0, u(x, 0)=u0(x)⩾0 x∈ℝ3, (0.2) The stationary problem for (ECP) is the famous Choquard–Pekar problem, and it has a unique positive solution ū(x) as long as p(x) is radial, continuous in ℝ3, p(x)⩾ā>0, and limx∣→∞p(x)=p¯>0. In this paper, we prove that if the initial data 0⩽u0(x)⩽(≢)ū(x), then the corresponding solution u(x, t) exists globally and it tends to the zero steady-state solution as t→∞, if u0(x)⩾(≢)ū(x), then the solution u(x,t) blows up in finite time. © 1997 B. G. Teubner Stuttgart–John Wiley & Sons Ltd.  相似文献   

5.
 We prove that the solution u of the equation u t =Δlog u, u>0, in (Ω\{x 0})×(0,T), Ω⊂ℝ2, has removable singularities at {x 0}×(0,T) if and only if for any 0<α<1, 0<a<b<T, there exist constants ρ0, C 1, C 2>0, such that C 1 |xx 0|αu(x,t)≤C 2|xx 0|−α holds for all 0<|xx 0|≤ρ0 and atb. As a consequence we obtain a sufficient condition for removable singularities at {∞}×(0,T) for solutions of the above equation in ℝ2×(0,T) and we prove the existence of infinitely many finite mass solutions for the equation in ℝ2×(0,T) when 0≤u 0L 1 (ℝ2) is radially symmetric and u 0L loc 1(ℝ2). Received: 16 December 2001 / Revised version: 20 May 2002 / Published online: 10 February 2003 Mathematics Subject Classification (1991): 35B40, 35B25, 35K55, 35K65  相似文献   

6.
We introduce a method for generating (Wx,T(m,s),mx,T(m,s),Mx,T(m,s))(W_{x,T}^{(\mu,\sigma)},m_{x,T}^{(\mu,\sigma)},M_{x,T}^{(\mu,\sigma)}) , where Wx,T(m,s)W_{x,T}^{(\mu,\sigma)} denotes the final value of a Brownian motion starting in x with drift μ and volatility σ at some final time T, mx,T(m,s) = inf0 £ tTWx,t(m,s)m_{x,T}^{(\mu,\sigma)} = {\rm inf}_{0\leq t \leq T}W_{x,t}^{(\mu,\sigma)} and Mx,T(m,s) = sup0 £ tT Wx,t(m,s)M_{x,T}^{(\mu,\sigma)} = {\rm sup}_{0\leq t \leq T} W_{x,t}^{(\mu,\sigma)} . By using the trivariate distribution of (Wx,T(m,s),mx,T(m,s),Mx,T(m,s))(W_{x,T}^{(\mu,\sigma)},m_{x,T}^{(\mu,\sigma)},M_{x,T}^{(\mu,\sigma)}) , we obtain a fast method which is unaffected by the well-known random walk approximation errors. The method is extended to jump-diffusion models. As sample applications we include Monte Carlo pricing methods for European double barrier knock-out calls with continuous reset conditions under both models. The proposed methods feature simple importance sampling techniques for variance reduction.  相似文献   

7.
The inverse scattering method is used to determine the distribution limit as ? → 0 of the solution u(x, t, ?) of the initial value problem. Ut ? 6uux + ?2uxxx = 0, u(x, 0) = v(x), where v(x) is a positive bump which decays sufficiently fast as x x→±α. The case v(x) ? 0 has been solved by Peter D. Lax and C. David Levermore [8], [9], [10]. The computation of the distribution limit of u(x, t, ?) as ? → 0 is reduced to a quadratic maximization problem, which is then solved.  相似文献   

8.
We consider an inverse boundary value problem for the heat equation ? t u = div (γ? x u) in (0, T) × Ω, u = f on (0, T) × ?Ω, u| t=0 = u 0, in a bounded domain Ω ? ? n , n ≥ 2, where the heat conductivity γ(t, x) is piecewise constant and the surface of discontinuity depends on time: γ(t, x) = k 2 (x ∈ D(t)), γ(t, x) = 1 (x ∈ Ω?D(t)). Fix a direction e* ∈ 𝕊 n?1 arbitrarily. Assuming that ?D(t) is strictly convex for 0 ≤ t ≤ T, we show that k and sup {ex; x ∈ D(t)} (0 ≤ t ≤ T), in particular D(t) itself, are determined from the Dirichlet-to-Neumann map : f → ?ν u(t, x)|(0, T)×?Ω. The knowledge of the initial data u 0 is not used in the proof. If we know min0≤tT (sup xD(t) x·e*), we have the same conclusion from the local Dirichlet-to-Neumann map. Numerical examples of stationary and moving circles inside the unit disk are shown. The results have applications to nondestructive testing. Consider a physical body consisting of homogeneous material with constant heat conductivity except for a moving inclusion with different conductivity. Then the location and shape of the inclusion can be monitored from temperature and heat flux measurements performed at the boundary of the body. Such a situation appears for example in blast furnaces used in ironmaking.  相似文献   

9.
The system x = A (t, x)x + B(t, x)u, where A(t, x) and B(t, x) are, respectively, n × n and n × m (m<n) continuous matrices whose elements are uniformly bounded for t ≽ t 0 and x ∈ ℝ n , is considered. It is assumed that the system has relative degree q = n - m + 1, and the determinant of the matrix composed of the last m rows of the matrix B(t, x) is bounded away from zero for t ≽ t 0 and x ∈ ℝ n . A special quadratic Lyapunov function with constant positive definite coefficient matrix H depending only on the range of variation of the coefficients in the matrices A(t, x) and B(t, x) is constructed and applied to obtain a control u(t, x) =7n ~B⋆ (t, x)H depending on a scalar parameter 7n under which the system is globally asymptotically stable provided that it is closed. Here, ~B (t, x) is the scalar matrix obtained from the matrix B(t, x) by setting the first n - m rows to zero.  相似文献   

10.
We establish conditions for the existence of a smooth solution of a quasilinear hyperbolic equationu tt - uxx = ƒ(x, t, u, u, u x),u (0,t) = u (π,t) = 0,u (x, t+ T) = u (x, t), (x, t) ∈ [0, π] ×R, and prove a theorem on the existence and uniqueness of a solution. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 51, No. 11, pp. 1574–1576, November, 1999.  相似文献   

11.
The Schrödinger operator Hu = -Δu + V(x)u, where V(x) → 0 as ¦x¦ → ∞, is considered in L2(Rm) for m?3. The asymptotic formula $$N(\lambda ,V) \sim \Upsilon _m \int {(\lambda - V(x))_ + ^{{m \mathord{\left/ {\vphantom {m {2_{dx} }}} \right. \kern-\nulldelimiterspace} {2_{dx} }}} ,} \lambda \to ---0,$$ is established for the number N(λ, V) of the characteristic values of the operator H which are less than λ. It is assumed about the potential V that V = Vo + V1; Vo < 0, ¦Vo =o (¦Vo¦3/2) as ¦x¦ → ∞; σ (t/2, Vo) ?cσ (t. Vo) and V1∈Lm/2,loc, σ(t, V1) =o (σ (t, Vo)), where σ (t,f)= mes {x:¦f (x) ¦ > t).  相似文献   

12.
13.
In this paper we study the quenching problem for the non-local diffusion equation
ut(x,t) = òW J(x - y)u(y,t)dy + ò\mathbbRN\W J(x - y)dy - u(x,t) - lu - p(x,t) {u_t}(x,t) = \int\limits_\Omega {J(x - y)u(y,t)dy + \int\limits_{{\mathbb{R}^N}\backslash \Omega } {J(x - y)dy - u(x,t) - \lambda {u^{ - p}}(x,t)} }  相似文献   

14.
Parabolic partial differential equations with overspecified data play a crucial role in applied mathematics and engineering, as they appear in various engineering models. In this work, the radial basis functions method is used for finding an unknown parameter p(t) in the inverse linear parabolic partial differential equation ut = uxx + p(t)u + φ, in [0,1] × (0,T], where u is unknown while the initial condition and boundary conditions are given. Also an additional condition ∫01k(x)u(x,t)dx = E(t), 0 ≤ tT, for known functions E(t), k(x), is given as the integral overspecification over the spatial domain. The main approach is using the radial basis functions method. In this technique the exact solution is found without any mesh generation on the domain of the problem. We also discuss on the case that the overspecified condition is in the form ∫0s(t) u(x,t)dx = E(t), 0 < tT, 0 < s(t) < 1, where s and E are known functions. Some illustrative examples are presented to show efficiency of the proposed method. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

15.
Let X be a real Banach space, ω : [0, +∞) → ? be an increasing continuous function such that ω(0) = 0 and ω(t + s) ≤ ω(t) + ω(s) for all t, s ∈ [0, +∞). According to the infinite dimensional analog of the Osgood theorem if ∫10 (ω(t))?1 dt = ∞, then for any (t0, x0) ∈ ?×X and any continuous map f : ?×XX such that ∥f(t, x) – f(t, y)∥ ≤ ω(∥xy∥) for all t ∈ ?, x, yX, the Cauchy problem (t) = f(t, x(t)), x(t0) = x0 has a unique solution in a neighborhood of t0. We prove that if X has a complemented subspace with an unconditional Schauder basis and ∫10 (ω(t))?1 dt < ∞ then there exists a continuous map f : ? × XX such that ∥f(t, x) – f(t, y)∥ ≤ ω(∥xy∥) for all (t, x, y) ∈ ? × X × X and the Cauchy problem (t) = f(t, x(t)), x(t0) = x0 has no solutions in any interval of the real line.  相似文献   

16.
This paper deals with the initial value problem of the type
\frac?u(t,x) ?t = Lu(t,x),     u(0,x) = u0(x)\frac{\partial u(t,x)} {\partial t} = {\mathcal{L}}u(t,x), \quad u(0,x) = u_{0}(x)  相似文献   

17.
18.
In this note, we prove an ?‐regularity theorem for the Ricci flow. Let (Mn,g(t)) with t ? [?T,0] be a Ricci flow, and let Hx0(y,s) be the conjugate heat kernel centered at some point (x0,0) in the final time slice. By substituting Hx0(?,s) into Perelman's W‐functional, we obtain a monotone quantity Wx0(s) that we refer to as the pointed entropy. This satisfies Wx0(s) ≤ 0, and Wx0(s) = 0 if and only if (Mn,g(t)) is isometric to the trivial flow on Rn. Then our main theorem asserts the following: There exists ? > 0, depending only on T and on lower scalar curvature and μ‐entropy bounds for the initial slice (Mn,g(?T)) such that Wx0(s) ≥ ?? implies |Rm| ≤ r?2 on P? r(x0,0), where r2 ≡ |s| and Pρ(x,t) ≡ Bρ(x,t) × (t2,t] is our notation for parabolic balls. The main technical challenge of the theorem is to prove an effective Lipschitz bound in x for the s‐average of Wx(s). To accomplish this, we require a new log‐Sobolev inequality. Perelman's work implies that the metric measure spaces (Mn,g(t),dvolg(t)) satisfy a log‐Sobolev; we show that this is also true for the heat kernel weighted spaces (Mn,g(t),Hx0(?,t)dvolg(t)). Our log‐Sobolev constants for these weighted spaces are in fact universal and sharp. The weighted log‐Sobolev has other consequences as well, including certain average Gaussian upper bounds on the conjugate heat kernel. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
In this article, a semigroup approach is presented for the mathematical analysis of the inverse coefficient problems of identifying the unknown diffusion coefficient k(u(x, t)) in the quasi‐linear parabolic equation ut(x, t)=(k(u(x, t))ux(x, t))x, with Dirichlet boundary conditions ux(0, t)=ψ0, u(1, t)=ψ1. The main purpose of this work is to analyze the distinguishability of the input–output mappings Φ[·] : ??→C1[0, T], Ψ[·] : ??→C1[0, T] using semigroup theory. In this article, it is shown that if the null space of semigroups T(t) and S(t) consists of only a zero function, then the input–output mappings Φ[·] and Ψ[·] have the distinguishability property. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
We study equations of the form $$\begin{gathered} u_{tt} + Lu + b(x,t)u_t = a(x,t)\left| u \right|^{\sigma - 1} u, \hfill \\ - u_t + Lu = a(x,t)\left| u \right|^{\sigma - 1} u \hfill \\ \end{gathered}$$ , whereL is a uniformly elliptic operator and 0<σ<1. In the half-cylinder II0,∞={(x, t):x= (x 1,...,x n )∈ ω,t>0}, where ? ? ? n is a bounded domain, we consider solutions satisfying the homogeneous Neumann condition forx∈?ω andt>0. We find conditions under which these solutions have compact support and prove statements of the following type: ifu(x, t)=o(t γ) ast→∞, then there exists aT such thatu(x, t)≡0 fort>T. In this case γ depends on the coefficients of the equation and on the exponent σ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号