首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Self-dual codes, which are codes that are equal to their orthogonal, are a widely studied family of codes. Various techniques involving circulant matrices and matrices from group rings have been used to construct such codes. Moreover, families of rings have been used, together with a Gray map, to construct binary self-dual codes. In this paper, we introduce a new bordered construction over group rings for self-dual codes by combining many of the previously used techniques. The purpose of this is to construct self-dual codes that were missed using classical construction techniques by constructing self-dual codes with different automorphism groups. We apply the technique to codes over finite commutative Frobenius rings of characteristic 2 and several group rings and use these to construct interesting binary self-dual codes. In particular, we construct some extremal self-dual codes of length 64 and 68, constructing 30 new extremal self-dual codes of length 68.  相似文献   

2.
In this paper, we give necessary and sufficient conditions for the existence of non-trivial cyclic self-dual codes over finite chain rings. We prove that there are no free cyclic self-dual codes over finite chain rings with odd characteristic. It is also proven that a self-dual code over a finite chain ring cannot be the lift of a binary cyclic self-dual code. The number of cyclic self-dual codes over chain rings is also investigated as an extension of the number of cyclic self-dual codes over finite fields given recently by Jia et al.  相似文献   

3.
Bachoc bachoc has recently introduced harmonic polynomials for binary codes. Computing these for extremal even formally self-dual codes of length 12, she found intersection numbers for such codes and showed that there are exactly three inequivalent [12,6,4] even formally self-dual codes, exactly one of which is self-dual. We prove a new theorem which gives a generator matrix for formally self-dual codes. Using the Bachoc polynomials we can obtain the intersection numbers for extremal even formally self-dual codes of length 14. These same numbers can also be obtained from the generator matrix. We show that there are precisely ten inequivalent [14,7,4] even formally self-dual codes, only one of which is self-dual.  相似文献   

4.
Cyclic codes over an infinite family of rings are defined. The general properties of cyclic codes over these rings are studied, in particular nontrivial one-generator cyclic codes are characterized. It is also proved that the binary images of cyclic codes over these rings under the natural Gray map are binary quasi-cyclic codes of index 2 k . Further, several optimal or near optimal binary codes are obtained from cyclic codes over R k via this map.  相似文献   

5.
We study odd and even \(\mathbb{Z }_2\mathbb{Z }_4\) formally self-dual codes. The images of these codes are binary codes whose weight enumerators are that of a formally self-dual code but may not be linear. Three constructions are given for formally self-dual codes and existence theorems are given for codes of each type defined in the paper.  相似文献   

6.
We give an algebraic structure for a large family of binary quasi-cyclic codes. We construct a family of commutative rings and a canonical Gray map such that cyclic codes over this family of rings produce quasi-cyclic codes of arbitrary index in the Hamming space via the Gray map. We use the Gray map to produce optimal linear codes that are quasi-cyclic.  相似文献   

7.
In this note, we give the complete classification of binary formally self-dual even codes of lengths 10, 12, 14 and 16. There are exactly fourteen, 29, 99 and 914 inequivalent such codes of lengths 10, 12, 14 and 16, respectively. This completes the classification of formally self-dual even codes of lengths up to 16. The first example of formally self-dual even code with a trivial automorphism group is also found. This shows that 16 is the smallest length for which there is a formally self-dual even code with a trivial automorphism group.  相似文献   

8.
We prove that self-dual codes exist over all finite commutative Frobenius rings, via their decomposition by the Chinese Remainder Theorem into local rings. We construct non-free self-dual codes under some conditions, using self-dual codes over finite fields, and we also construct free self-dual codes by lifting elements from the base finite field. We generalize the building-up construction for finite commutative Frobenius rings, showing that all self-dual codes with minimum weight greater than 2 can be obtained in this manner in cases where the construction applies.  相似文献   

9.
Using ideas from the cohomology of finite groups, an isomorphism is established between a group ring and the direct sum of twisted group rings. This gives a decomposition of a group ring code into twisted group ring codes. In the abelian case the twisted group ring codes are (multi-dimensional) constacyclic codes. We use the decomposition to prove that, with respect to the Euclidean inner product, there are no self-dual group ring codes when the group is the direct product of a 2-group and a group of odd order, and the ring is a field of odd characteristic or a certain modular ring. In particular, there are no self-dual abelian codes over the rings indicated. Extensions of these results to non-Euclidean inner products are briefly discussed.  相似文献   

10.
In this paper, we study binary optimal odd formallyself-dual codes. All optimal odd formally self-dual codes areclassified for length up to 16. The highest minimum weight ofany odd formally self-dual codes of length up to 24 is determined. We also show that there is a unique linearcode for parameters [16, 8, 5] and [22, 11, 7], up to equivalence.  相似文献   

11.
In this paper, we study self-dual permutation codes over formal power series rings and finite principal ideal rings. We first give some results on the torsion codes associated with the linear codes over formal power series rings. These results allow for obtaining some conditions for non-existence of self-dual permutation codes over formal power series rings. Finally, we describe self-dual permutation codes over finite principal ideal rings by examining permutation codes over their component chain rings.  相似文献   

12.
The purpose of this paper is to construct nontrivial MDS self-dual codes over Galois rings. We consider a building-up construction of self-dual codes over Galois rings as a GF(q)-analogue of (Kim and Lee, J Combin Theory ser A, 105:79–95). We give a necessary and sufficient condition on which the building-up construction holds. We construct MDS self-dual codes of lengths up to 8 over GR(32,2), GR(33,2) and GR(34,2), and near-MDS self-dual codes of length 10 over these rings. In a similar manner, over GR(52,2), GR(53,2) and GR(72,2), we construct MDS self-dual codes of lengths up to 10 and near-MDS self-dual codes of length 12. Furthermore, over GR(112,2) we have MDS self-dual codes of lengths up to 12.   相似文献   

13.
Formally self-dual even codes have recently been studied. Double circulant even codes are a family of such codes and almost all known extremal formally self-dual even codes are of this form. In this paper, we classify all extremal double circulant formally self-dual even codes which are not self-dual. We also investigate the existence of near-extremal formally self-dual even codes.  相似文献   

14.
 Lengths 22 and 30 are so far the only open cases in the classification of extremal formally self-dual even codes. In this paper, a classification of the extremal formally self-dual even codes of length 22 is given. There are 41520 such codes.A variety of properties of these codes are investigated. In particular, new 2-(22, 6, 5) designs are constructed from the codes. Received: February 9, 2000  相似文献   

15.
16.
We show that (n, 2 n ) additive codes over GF(4) can be represented as directed graphs. This generalizes earlier results on self-dual additive codes over GF(4), which correspond to undirected graphs. Graph representation reduces the complexity of code classification, and enables us to classify additive (n, 2 n ) codes over GF(4) of length up to 7. From this we also derive classifications of isodual and formally self-dual codes. We introduce new constructions of circulant and bordered circulant directed graph codes, and show that these codes will always be isodual. A computer search of all such codes of length up to 26 reveals that these constructions produce many codes of high minimum distance. In particular, we find new near-extremal formally self-dual codes of length 11 and 13, and isodual codes of length 24, 25, and 26 with better minimum distance than the best known self-dual codes.  相似文献   

17.
Combinatorial designs have been used widely in the construction of self-dual codes. Recently a new method of constructing self-dual codes was established using orthogonal designs. This method has led to the construction of many new self-dual codes over small finite fields and rings. In this paper, we generalize this method by using generalized orthogonal designs, and we give another new method that creates and solves Diophantine equations over GF(p) in order to find suitable generator matrices for self-dual codes. We show that under the necessary conditions these methods can be applied as well to small and large fields. We apply these two methods to study self-dual codes over GF(31) and GF(37). Using these methods we obtain some new maximum distance separable self-dual codes of small orders.  相似文献   

18.
The weight enumerator of a formally self-dual even code is obtained by the Gleason theorem. Recently, Kim and Pless gave some restrictions on the possible weight enumerators of near-extremal formally self-dual even codes of length divisible by eight. In this paper, the weight enumerators for which there is a near-extremal formally self-dual even code are completely determined for lengths 24 and 32, by constructing new near-extremal formally self-dual codes. We also give a classification of near- extremal double circulant codes of lengths 24 and 32. Communicated by: P. Fitzpatrick  相似文献   

19.
Linear complementary dual codes were defined by Massey in 1992, and were used to give an optimum linear coding solution for the two user binary adder channel. In this paper, we define the analog of LCD codes over fields in the ambient space with mixed binary and quaternary alphabets. These codes are additive, in the sense that they are additive subgroups, rather than linear as they are not vector spaces over some finite field. We study the structure of these codes and we use the canonical Gray map from this space to the Hamming space to construct binary LCD codes in certain cases. We give examples of such binary LCD codes which are distance-optimal, i.e., they have the largest minimum distance among all binary LCD codes with the same length and dimension.  相似文献   

20.
A classic result of Delsarte connects the strength (as orthogonal array) of a linear code with the minimum weight of its dual: the former is one less than the latter. Since the paper of Hammons et al., there is a lot of interest in codes over rings, especially in codes over \(\mathbb {Z}_{4}\) and their (usually non-linear) binary Gray map images. We show that Delsarte’s observation extends to codes over arbitrary finite commutative rings with identity. Also, we show that the strength of the Gray map image of a \(\mathbb {Z}_{4}\) code is one less than the minimum Lee weight of its Gray map image.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号