首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The weight enumerator of a formally self-dual even code is obtained by the Gleason theorem. Recently, Kim and Pless gave some restrictions on the possible weight enumerators of near-extremal formally self-dual even codes of length divisible by eight. In this paper, the weight enumerators for which there is a near-extremal formally self-dual even code are completely determined for lengths 24 and 32, by constructing new near-extremal formally self-dual codes. We also give a classification of near- extremal double circulant codes of lengths 24 and 32. Communicated by: P. Fitzpatrick  相似文献   

2.
Recently extremal double circulant self-dual codes have been classified for lengths n ≤ 62. In this paper, a complete classification of extremal double circulant self-dual codes of lengths 64 to 72 is presented. Almost all of the extremal double circulant singly-even codes given have weight enumerators for which extremal codes were not previously known to exist.  相似文献   

3.
In this paper it is shown that the weight enumerator of a bordered double circulant self-dual code can be obtained from those of a pure double circulant self-dual code and its shadow through a relationship between bordered and pure double circulant codes. As applications, a restriction on the weight enumerators of some extremal double circulant codes is determined and a uniqueness proof of extremal double circulant self-dual codes of length 46 is given. New extremal singly-even [44,22,8] double circulant codes are constructed. These codes have weight enumerators for which extremal codes were not previously known to exist.  相似文献   

4.
Bachoc bachoc has recently introduced harmonic polynomials for binary codes. Computing these for extremal even formally self-dual codes of length 12, she found intersection numbers for such codes and showed that there are exactly three inequivalent [12,6,4] even formally self-dual codes, exactly one of which is self-dual. We prove a new theorem which gives a generator matrix for formally self-dual codes. Using the Bachoc polynomials we can obtain the intersection numbers for extremal even formally self-dual codes of length 14. These same numbers can also be obtained from the generator matrix. We show that there are precisely ten inequivalent [14,7,4] even formally self-dual codes, only one of which is self-dual.  相似文献   

5.
Self-dual codes, which are codes that are equal to their orthogonal, are a widely studied family of codes. Various techniques involving circulant matrices and matrices from group rings have been used to construct such codes. Moreover, families of rings have been used, together with a Gray map, to construct binary self-dual codes. In this paper, we introduce a new bordered construction over group rings for self-dual codes by combining many of the previously used techniques. The purpose of this is to construct self-dual codes that were missed using classical construction techniques by constructing self-dual codes with different automorphism groups. We apply the technique to codes over finite commutative Frobenius rings of characteristic 2 and several group rings and use these to construct interesting binary self-dual codes. In particular, we construct some extremal self-dual codes of length 64 and 68, constructing 30 new extremal self-dual codes of length 68.  相似文献   

6.
A classification of all extremal double circulant self-dual codes of lengths up to 72 is known. In this paper, we give a classification of all extremal double circulant self-dual codes of lengths 74-88.  相似文献   

7.
A code is called formally self-dual if and have the same weight enumerators. There are four types of nontrivial divisible formally self-dual codes over , and . These codes are called extremal if their minimum distances achieve the Mallows-Sloane bound. S. Zhang gave possible lengths for which extremal self-dual codes do not exist. In this paper, we define near-extremal formally self-dual (f.s.d.) codes. With Zhang’s systematic approach, we determine possible lengths for which the four types of near-extremal formally self-dual codes as well as the two types of near-extremal formally self-dual additive codes cannot exist. In particular, our result on the nonexistence of near-extremal binary f.s.d. even codes of any even length n completes all the cases since only the case 8|n was dealt with by Han and Lee.   相似文献   

8.
 Lengths 22 and 30 are so far the only open cases in the classification of extremal formally self-dual even codes. In this paper, a classification of the extremal formally self-dual even codes of length 22 is given. There are 41520 such codes.A variety of properties of these codes are investigated. In particular, new 2-(22, 6, 5) designs are constructed from the codes. Received: February 9, 2000  相似文献   

9.
In this note, we give the complete classification of binary formally self-dual even codes of lengths 10, 12, 14 and 16. There are exactly fourteen, 29, 99 and 914 inequivalent such codes of lengths 10, 12, 14 and 16, respectively. This completes the classification of formally self-dual even codes of lengths up to 16. The first example of formally self-dual even code with a trivial automorphism group is also found. This shows that 16 is the smallest length for which there is a formally self-dual even code with a trivial automorphism group.  相似文献   

10.
We show that (n, 2 n ) additive codes over GF(4) can be represented as directed graphs. This generalizes earlier results on self-dual additive codes over GF(4), which correspond to undirected graphs. Graph representation reduces the complexity of code classification, and enables us to classify additive (n, 2 n ) codes over GF(4) of length up to 7. From this we also derive classifications of isodual and formally self-dual codes. We introduce new constructions of circulant and bordered circulant directed graph codes, and show that these codes will always be isodual. A computer search of all such codes of length up to 26 reveals that these constructions produce many codes of high minimum distance. In particular, we find new near-extremal formally self-dual codes of length 11 and 13, and isodual codes of length 24, 25, and 26 with better minimum distance than the best known self-dual codes.  相似文献   

11.
In this paper, binary extremal singly even self-dual codes of length 40 and extremal odd unimodular lattices in dimension 40 are studied. We give a classification of extremal singly even self-dual codes of length 40. We also give a classification of extremal odd unimodular lattices in dimension 40 with shadows having 80 vectors of norm 2 through their relationships with extremal doubly even self-dual codes of length 40.  相似文献   

12.
It is known that it is possible to construct a generator matrix for a self-dual code of length 2n+2 from a generator matrix of a self-dual code of length 2n. With the aid of a computer, we construct new extremal Type I codes of lengths 40, 42, and 44 from extremal self-dual codes of lengths 38, 40, and 42 respectively. Among them are seven extremal Type I codes of length 44 whose weight enumerator is 1+224y 8+872y 10+·. A Type I code of length 44 with this weight enumerator was not known to exist previously.  相似文献   

13.
We define some new polynomials associated to a linear binary code and a harmonic function of degree k. The case k=0 is the usual weight enumerator of the code. When divided by (xy) k , they satisfy a MacWilliams type equality. When applied to certain harmonic functions constructed from Hahn polynomials, they can compute some information on the intersection numbers of the code. As an application, we classify the extremal even formally self-dual codes of length 12.  相似文献   

14.
The only example of a binary doubly-even self-dual [120,60,20] code was found in 2005 by Gaborit et al. (IEEE Trans Inform theory 51, 402–407 2005). In this work we present 25 new binary doubly-even self-dual [120,60,20] codes having an automorphism of order 23. Moreover we list 7 self-dual [116,58,18] codes, 30 singly-even self-dual [96,48,16] codes and 20 extremal self-dual [92,46,16] codes. All codes are new and present different weight enumerators.   相似文献   

15.
In this paper, we give a pseudo-random method to construct extremal Type II codes overℤ4 . As an application, we give a number of new extremal Type II codes of lengths 24, 32 and 40, constructed from some extremal doubly-even self-dual binary codes. The extremal Type II codes of length 24 have the property that the supports of the codewords of Hamming weight 10 form 5−(24,10,36) designs. It is also shown that every extremal doubly-even self-dual binary code of length 32 can be considered as the residual code of an extremal Type II code over ℤ4.  相似文献   

16.
We characterize the structure of 2-quasi-cyclic codes over a finite field F by the so-called Goursat Lemma. With the characterization, we exhibit a necessary and sufficient condition for a 2-quasi-cyclic code being a dihedral code. And we obtain a necessary and sufficient condition for a self-dual 2-quasi-cyclic code being a dihedral code (if charF=2), or a consta-dihedral code (if charF2). As a consequence, any self-dual 2-quasi-cyclic code generated by one element must be (consta-)dihedral. In particular, any self-dual double circulant code must be (consta-)dihedral. We also obtain necessary and sufficient conditions under which the three classes (the self-dual double circulant codes, the self-dual 2-quasi-cyclic codes, and the self-dual (consta-)dihedral codes) of codes coincide with each other.  相似文献   

17.
Methods to design binary self-dual codes with an automorphism of order two without fixed points are presented. New extremal self-dual [40,20,8], [42,21,8],[44,22,8] and [64,32,12] codes with previously not known weight enumerators are constructed.  相似文献   

18.
New extremal doubly-even [64, 32, 12] codes   总被引:1,自引:0,他引:1  
In this paper, we consider a general construction of doubly-even self-dual codes. From three symmetric 2-(31, 10, 3) designs, we construct at least 3228 inequivalent extremal doubly-even [64, 32, 12] codes. These codes are distinguished by their K-matrices.  相似文献   

19.
Symmetric designs are used to construct binary extremal self-dual codes and Hadamard matrices and weighing matrices are used to construct extremal ternary self-dual codes. In this paper, we consider orthogonal designs and related matrices to construct self-dual codes over a larger alphabet. As an example, a number of extremal Type II codes over 2k are constructed.  相似文献   

20.
We give a classification of four-circulant singly even self-dual [60, 30, d] codes for \(d=10\) and 12. These codes are used to construct extremal singly even self-dual [60, 30, 12] codes with weight enumerator for which no extremal singly even self-dual code was previously known to exist. From extremal singly even self-dual [60, 30, 12] codes, we also construct optimal singly even self-dual [58, 29, 10] codes with weight enumerator for which no optimal singly even self-dual code was previously known to exist. Finally, we give some restriction on the possible weight enumerators of certain singly even self-dual codes with shadow of minimum weight 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号