首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
F. Göring 《Discrete Mathematics》2010,310(9):1491-1494
In 1956, W.T. Tutte proved that every 4-connected planar graph is hamiltonian. Moreover, in 1997, D.P. Sanders extended this to the result that a 4-connected planar graph contains a hamiltonian cycle through any two of its edges. It is shown that Sanders’ result is best possible by constructing 4-connected maximal planar graphs with three edges a large distance apart such that any hamiltonian cycle misses one of them. If the maximal planar graph is 5-connected then such a construction is impossible.  相似文献   

2.
We present a short proof of the following theorems simultaneously: Kuratowski's theorem, Fary's theorem, and the theorem of Tutte that every 3-connected planar graph has a convex representation. We stress the importance of Kuratowski's theorem by showing how it implies a result of Tutte on planar representations with prescribed vertices on the same facial cycle as well as the planarity criteria of Whitney, MacLane, Tutte, and Fournier (in the case of Whitney's theorem and MacLane's theorem this has already been done by Tutte). In connection with Tutte's planarity criterion in terms of non-separating cycles we give a short proof of the result of Tutte that the induced non-separating cycles in a 3-connected graph generate the cycle space. We consider each of the above-mentioned planarity criteria for infinite graphs. Specifically, we prove that Tutte's condition in terms of overlap graphs is equivalent to Kuratowski's condition, we characterize completely the infinite graphs satisfying MacLane's condition and we prove that the 3-connected locally finite ones have convex representations. We investigate when an infinite graph has a dual graph and we settle this problem completely in the locally finite case. We show by examples that Tutte's criterion involving non-separating cycles has no immediate extension to infinite graphs, but we present some analogues of that criterion for special classes of infinite graphs.  相似文献   

3.
We characterize the tight structure of a vertex-accumulation-free maximal planar graph with no separating triangles. Together with the result of Halin who gave an equivalent form for such graphs, this yields that a tight structure always exists in every 4-connected maximal planar graph with one end.  相似文献   

4.
A graph isk-cyclable if givenk vertices there is a cycle that contains thek vertices. Sallee showed that every finite 3-connected planar graph is 5-cyclable. In this paper, by characterizing the circuit graphs and investigating the structure of LV-graphs, we extend his result to 3-connected infinite locally finite VAP-free plane graphs.  相似文献   

5.
In a rectilinear dual of a planar graph vertices are represented by simple rectilinear polygons, while edges are represented by side-contact between the corresponding polygons. A rectilinear dual is called a cartogram if the area of each region is equal to a pre-specified weight. The complexity of a cartogram is determined by the maximum number of corners (or sides) required for any polygon. In a series of papers the polygonal complexity of such representations for maximal planar graphs has been reduced from the initial 40 to 34, then to 12 and very recently to the currently best known 10. Here we describe a construction with 8-sided polygons, which is optimal in terms of polygonal complexity as 8-sided polygons are sometimes necessary. Specifically, we show how to compute the combinatorial structure and how to refine it into an area-universal rectangular layout in linear time. The exact cartogram can be computed from the area-universal layout with numerical iteration, or can be approximated with a hill-climbing heuristic. We also describe an alternative construction of cartograms for Hamiltonian maximal planar graphs, which allows us to directly compute the cartograms in linear time. Moreover, we prove that even for Hamiltonian graphs 8-sided rectilinear polygons are necessary, by constructing a non-trivial lower bound example. The complexity of the cartograms can be reduced to 6 if the Hamiltonian path has the extra property that it is one-legged, as in outer-planar graphs. Thus, we have optimal representations (in terms of both polygonal complexity and running time) for Hamiltonian maximal planar and maximal outer-planar graphs. Finally we address the problem of constructing small-complexity cartograms for 4-connected graphs (which are Hamiltonian). We first disprove a conjecture, posed by two set of authors, that any 4-connected maximal planar graph has a one-legged Hamiltonian cycle, thereby invalidating an attempt to achieve a polygonal complexity 6 in cartograms for this graph class. We also prove that it is NP-hard to decide whether a given 4-connected plane graph admits a cartogram with respect to a given weight function.  相似文献   

6.
A graph G is loosely-c-connected, or ?-c-connected, if there exists a number d depending on G such that the deletion of fewer than c vertices from G leaves precisely one infinite component and a graph containing at most d vertices. In this paper, we give the structure of a set of ?-c-connected infinite graphs that form an unavoidable set among the topological minors of ?-c-connected infinite graphs. Corresponding results for minors and parallel minors are also obtained.  相似文献   

7.
We provide a new method for extending results on finite planar graphs to the infinite case. Thus a result of Ungar on finite graphs has the following extension: Every infinite, planar, cubic, cyclically 4‐edge‐connected graph has a representation in the plane such that every edge is a horizontal or vertical straight line segment, and such that no two edges cross. A result of Tamassia and Tollis extends as follows: Every countably infinite planar graph is a subgraph of a visibility graph. Furthermore, every locally finite, 2‐connected, planar graph is a visibility graph. © 2006 Wiley Periodicals, Inc. J Graph Theory 52: 257–265, 2006  相似文献   

8.
We prove that every infinite, locally finite 3-connected, almost 4-connected, almost transitive, nonplanar graph, which contains infinitely many pairwise disjoint infinite paths belonging to the same end, can be contracted into an infinite complete graph. This implies that every infinite, locally finite, connected, nonplanar vertex-transitive graph with only one end can be contracted into an infinite complete graph. This problem was raised by L. Babai.  相似文献   

9.
A graph with n vertices is said to have a small cycle cover provided its edges can be covered with at most (2n ? 1)/3 cycles. Bondy [2] has conjectured that every 2-connected graph has a small cycle cover. In [3] Lai and Lai prove Bondy’s conjecture for plane triangulations. In [1] the author extends this result to all planar 3-connected graphs, by proving that they can be covered by at most (n + 1)/2 cycles. In this paper we show that Bondy’s conjecture holds for all planar 2-connected graphs. We also show that all planar 2-edge-connected graphs can be covered by at most (3n ? 3)/4 cycles and we show an infinite family of graphs for which this bound is attained.  相似文献   

10.
In this paper it is proved that every 3-connected planar graph contains a path on 3 vertices each of which is of degree at most 15 and a path on 4 vertices each of which has degree at most 23. Analogous results are stated for 3-connected planar graphs of minimum degree 4 and 5. Moreover, for every pair of integers n 3, k 4 there is a 2-connected planar graph such that every path on n vertices in it has a vertex of degree k.  相似文献   

11.
We investigate vertex‐transitive graphs that admit planar embeddings having infinite faces, i.e., faces whose boundary is a double ray. In the case of graphs with connectivity exactly 2, we present examples wherein no face is finite. In particular, the planar embeddings of the Cartesian product of the r‐valent tree with K2 are comprehensively studied and enumerated, as are the automorphisms of the resulting maps, and it is shown for r = 3 that no vertex‐transitive group of graph automorphisms is extendable to a group of homeomorphisms of the plane. We present all known families of infinite, locally finite, vertex‐transitive graphs of connectivity 3 and an infinite family of 4‐connected graphs that admit planar embeddings wherein each vertex is incident with an infinite face. © 2003 Wiley Periodicals, Inc. J Graph Theory 42: 257–275, 2003  相似文献   

12.
A graph G is said to be well-covered if every maximal independent set of vertices has the same cardinality. A planar (simple) graph in which each face is a triangle is called a triangulation. It was proved in an earlier paper [A. Finbow, B. Hartnell, R. Nowakowski, M. Plummer, On well-covered triangulations: Part I, Discrete Appl. Math., 132, 2004, 97-108] that there are no 5-connected planar well-covered triangulations. It is the aim of the present paper to completely determine the 4-connected well-covered triangulations containing two adjacent vertices of degree 4. In a subsequent paper [A. Finbow, B. Hartnell, R. Nowakowski, M. Plummer, On well-covered triangulations: Part III (submitted for publication)], we show that every 4-connected well-covered triangulation contains two adjacent vertices of degree 4 and hence complete the task of characterizing all 4-connected well-covered planar triangulations. There turn out to be only four such graphs. This stands in stark contrast to the fact that there are infinitely many 3-connected well-covered planar triangulations.  相似文献   

13.
Summary A variety of examples of 4-connected 4-regular graphs with no pair of disjoint Hamiltonian circuits were constructed in response to Nash-Williams conjecture that every 4-connected 4-regular graph is Hamiltonian and also admits a pair of edge-disjoint Hamiltonian circuits. Nash-Williams's problem is especially interesting for planar graphs since 4-connected planar graphs are Hamiltonian. Examples of 4-connected 4-regular planar graphs in which every pair of Hamiltonian circuits have edges in common are included in the above mentioned examples.B. Grünbaum asked whether 5-connected planar graphs always admit a pair of disjoint Hamiltonian circuits. In this paper we introduce a technique that enables us to construct infinitely many examples of 5-connected planar graphs, 5-regular and non regular, in which every pair of Hamiltonian circuits have edges in common.  相似文献   

14.
《Discrete Mathematics》2007,307(7-8):885-891
We determine a lower bound for the number of edges of a 2-connected maximal nontraceable graph, and present a construction of an infinite family of maximal nontraceable graphs that realize this bound.  相似文献   

15.
《Discrete Mathematics》2022,345(10):113012
An even cycle decomposition of a graph is a partition of its edges into even cycles. Markström constructed infinitely many 2-connected 4-regular graphs without even cycle decompositions. Má?ajová and Mazák then constructed an infinite family of 3-connected 4-regular graphs without even cycle decompositions. In this note, we further show that there exists an infinite family of 4-connected 4-regular graphs without even cycle decompositions.  相似文献   

16.
The paper is concerned with certain kinds of random processes in infinite graphs. A finite trail of a graph which cannot be continued from either end is called terminated, and a finite trail is called terminable of it is a segment of a finite terminated trail; analogously for 1 - ∞ trails, finite paths, and 1 - ∞ paths.For k = 1,2,3,…, there exist graphs which contain 2 - ∞ paths and have node-connectivity k and in which no finite path and no 1 - ∞ path is terminable, and also such graphs in which every finite path and every 1 - ∞ path is terminable. In any graph with infinite node-connectivity every node of valency N0 is the end-node of terminated 1 - ∞ paths. There exist graphs with node-connectivity N0 in which every 1 - ∞ path is terminable. For λ = 1,2,3,…, there exist graphs which contain 2 - ∞ paths and have edge-connectivity λ and in which no finite trail and no 1 - ∞ trail is terminable, and also such graphs in which every finite trail and every 1 - ∞ trail is terminable. In contrast to the situation for 1 - ∞ paths, every connected infinite graph in which every 1 - ∞ trail is terminable contains at least one node of odd edge-degree and if in addition every finite trail is terminable, then there are at least two nodes of odd edge-degree.  相似文献   

17.
In this paper, we introduce three operations on planar graphs that we call face splitting, double face splitting, and subdivision of hexagons. We show that the duals of the planar 4-connected graphs can be generated from the graph of the cube by these three operations. That is, given any graphG that is the dual of a planar 4-connected graph, there is a sequence of duals of planar 4-connected graphsG 0,G 1, …,G n such thatG 0 is the graph of the cube,G n=G, and each graph is obtained from its predecessor by one of our three operations. Research supported by a Sloan Foundation fellowship and by NSF Grant#GP-27963.  相似文献   

18.
LexX be anm-connected infinite graph without subgraphs homeomorphic toKm, n, for somen, and let α be an automorphism ofX with at least one cycle of infinite length. We characterize the structure of α and use this characterization to extend a known result about orientation-preserving automorphisms of finite plane graphs to infinite plane graphs. In the last section we investigate the action of α on the ends ofX and show that α fixes at most two ends (Theorem 3.2).  相似文献   

19.
图的星色数     
李德明 《数学进展》1999,28(3):259-265
给出了一些星色数为4的平面图,它们不含有轮图作为子图,这回答了Zhu的一个问题,给出了一类4连通平面图其星色数在3与4之间,这也回答了Abbott和Zhou的一个问题,应用图的同态概念,讨论了某些图的字典积的星色数,证明了一个图及其补图的星色数的和与积所满足的两个不等式。  相似文献   

20.
We prove a decomposition result for locally finite graphs which can be used to extend results on edge-connectivity from finite to infinite graphs. It implies that every 4k-edge-connected graph G contains an immersion of some finite 2k-edge-connected Eulerian graph containing any prescribed vertex set (while planar graphs show that G need not containa subdivision of a simple finite graph of large edge-connectivity). Also, every 8k-edge connected infinite graph has a k-arc-connected orientation, as conjectured in 1989.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号