首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper deals with the numerical solution of laminar viscous incompressible flows for generalized Newtonian fluids in the branching channel. The generalized Newtonian fluids contain Newtonian fluids, shear thickening and shear thinning non-Newtonian fluids. The mathematical model is the generalized system of Navier-Stokes equations. The finite volume method combined with an artificial compressibility method is used for spatial discretization. For time discretization the explicit multistage Runge-Kutta numerical scheme is considered. Steady state solution is achieved for t → ∞ using steady boundary conditions and followed by steady residual behavior. For unsteady solution a dual-time stepping method is considered. Numerical results for flows in two dimensional and three dimensional branching channel are presented.  相似文献   

2.
In this paper,we shall prove that the Koch-Tataru solution u to the incompressible Navier-Stokes equations in Rd satisfies the decay estimates involving some borderline Besov norms with d 3.Moreover,u has a unique trajectory which is Hlder continuous with respect to the space variables.  相似文献   

3.
In this article, we shall study the inviscid limit of two dimensional fluids with bounded voticity. We prove that the solution of incompressible Navier-Stokes system converges strongly in L2 to the solution of the Euler incompressible system in the case of two-dimensional fluids in the whole space.  相似文献   

4.
We consider the boundary value problem for the stationary Navier-Stokes equations describing an inhomogeneous incompressible fluid in a two dimensional bounded domain. We show the existence of a weak solution with boundary values for the density prescribed in LL^{\infty}.  相似文献   

5.
We prove the existence of a strong solution to the three‐dimensional steady Navier–Stokes equations in the exterior of an obstacle undergoing a rigid motion. Unlike the classical exterior problem for the Navier–Stokes equations, that only takes into account the translational motion of the obstacle, is this case, the obstacle can also rotate. Assuming the total flux of the velocity field through the boundary to be sufficiently small, we first construct approximating solutions in bounded regions ΩR = Ω∩ {x ∈ ?3:∣x∣< R} invading the liquid domain Ω. A set of estimates independent of R are shown to hold for the approximating solutions which allows to obtain a strong solution by taking the limit R→∞. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
We investigate the nonlinear instability of a smooth steady density profile solution to the three-dimensional nonhomogeneous incompressible Navier-Stokes equations in the presence of a uniform gravitational field, including a Rayleigh-Taylor steady-state solution with heavier density with increasing height (referred to the Rayleigh-Taylor instability). We first analyze the equations obtained from linearization around the steady density profile solution. Then we construct solutions to the linearized problem that grow in time in the Sobolev space H k , thus leading to a global instability result for the linearized problem. With the help of the constructed unstable solutions and an existence theorem of classical solutions to the original nonlinear equations, we can then demonstrate the instability of the nonlinear problem in some sense. Our analysis shows that the third component of the velocity already induces the instability, which is different from the previous known results.  相似文献   

7.
It is showed that, as the Mach number goes to zero, the weak solution of the compressible Navier-Stokes equations in the whole space with general initial data converges to the strong solution of the incompressible Navier-Stokes equations as long as the later exists. The proof of the result relies on the new modulated energy functional and the Strichartz's estimate of linear wave equation.  相似文献   

8.
In this paper we derive various sufficient conditions on the pressure for vanishing velocity in the incompressible Navier-Stokes and the Euler equations in ? N .  相似文献   

9.
We consider the asymptotic behavior of the strong solution to the incompressible magnetohydrodynamics (MHD) equations in a half space. The Lr‐decay rates of the strong solution and its derivatives with respect to space variables and time variable, including the L1 and L decay rates of its first order derivatives with respect to space variables, are derived by using Lq ? Lr estimates of the Stokes semigroup and employing a decomposition for the nonlinear terms in MHD equations. In addition, if the given initial data lie in a suitable weighted space, we obtain more rapid decay rates than observed in general. Similar results are known for incompressible Navier–Stokes equations in a half space under same assumption. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
We study the differential system governing the flow of an incompressible ferrofluid under the action of a magnetic field. The system is a combination of the Navier-Stokes equations, the angular momentum equation, the magnetization equation and the magnetostatic equations. No regularizing term is added to the magnetization equation. We prove the local-in-time existence of the unique strong solution to the system posed in a bounded domain of R3 and equipped with initial and boundary conditions.  相似文献   

11.
We consider the Cauchy problem for the incompressible Navier-Stokes equations in R 3, and provide a new regularity criterion involving only two entries of the Jacobian matrix of the velocity field.  相似文献   

12.
Following earlier work for Stokes equations, a least squares functional is developed for two‐ and three‐dimensional Oseen equations. By introducing a velocity flux variable and associated curl and trace equations, ellipticity is established in an appropriate product norm. The form of Oseen equations examined here is obtained by linearizing the incompressible Navier–Stokes equations. An algorithm is presented for approximately solving steady‐state, incompressible Navier–Stokes equations with a nested iteration‐Newton‐FOSLS‐AMG iterative scheme, which involves solving a sequence of Oseen equations. Some numerical results for Kovasznay flow are provided. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
We prove the existence of a spatially periodic weak solution to the steady compressible isentropic Navier-Stokes equations in R3 for any specific heat ratio γ>1. The proof is based on the weighted estimates of both pressure and kinetic energy for the approximate system which result in some higher integrability of the density, and the method of weak convergence.  相似文献   

14.
In this paper we are concerned with the differential system proposed by Shliomis to describe the motion of an incompressible ferrofluid submitted to an external magnetic field. The system consists of the Navier-Stokes equations, the magnetization equations and the magnetostatic equations. No regularizing term is added to the magnetization equations. We prove the local existence of unique strong solution for the Cauchy problem and establish a finite time blow-up criterion of strong solutions. Under the smallness assumption of the initial data and the external magnetic field, we prove the global existence of strong solutions and derive a decay rate of such small solutions in L2-norm.  相似文献   

15.
In this paper, we propose a dimensional splitting method for the three dimensional (3D) rotating Navier-Stokes equations. Assume that the domain is a channel bounded by two surfaces and is decomposed by a series of surfaces ■i into several sub-domains, which are called the layers of the flow. Every interface i between two sub-domains shares the same geometry. After establishing a semi-geodesic coordinate (S-coordinate) system based on ■i , Navier-Stoke equations in this coordinate can be expressed as the sum of two operators, of which one is called the membrane operator defined on the tangent space on ■i , another one is called the bending operator taking value in the normal space on ■i . Then the derivatives of velocity with respect to the normal direction of the surface are approximated by the Euler central difference, and an approximate form of Navier-Stokes equations on the surface ■i is obtained, which is called the two-dimensional three-component (2D-3C) Navier-Stokes equations on a two dimensional manifold. Solving these equations by alternate iteration, an approximate solution to the original 3D Navier-Stokes equations is obtained. In addition, the proof of the existence of solutions to 2D-3C Navier-Stokes equations is provided, and some approximate methods for solving 2D-3C Navier-Stokes equations are presented.  相似文献   

16.
We consider the Cauchy problem for the incompressible Navier-Stokes equations in R 3, and provide two new regularity criteria involving only two entries of the Jacobian matrix of the velocity field.  相似文献   

17.
In this paper, we show that the Cauchy problem of the incompressible Navier-Stokes equations with damping α|u|β−1u(α>0) has global strong solution for any β>3 and the strong solution is unique when 3<β?5. This improves earlier results.  相似文献   

18.
We construct solutions for 2- and 3-D stochastic nonhomogeneous incompressible Navier-Stokes equations with general multiplicative noise. These equations model the velocity of a mixture of incompressible fluids of varying density, influenced by random external forces that involve feedback; that is, multiplicative noise. Weak solutions for the corresponding deterministic equations were first found by Kazhikhov [A.V. Kazhikhov, Solvability of the initial and boundary-value problem for the equations of motion of an inhomogeneous viscous incompressible fluid, Soviet Phys. Dokl. 19 (6) (1974) 331-332; English translation of the paper in: Dokl. Akad. Nauk SSSR 216 (6) (1974) 1240-1243]. A stochastic version with additive noise was solved by Yashima [H.F. Yashima, Equations de Navier-Stokes stochastiques non homogènes et applications, Thesis, Scuola Normale Superiore, Pisa, 1992].The methods here extend the Loeb space techniques used to obtain the first general solutions of the stochastic Navier-Stokes equations with multiplicative noise in the homogeneous case [M. Capiński, N.J. Cutland, Stochastic Navier-Stokes equations, Applicandae Math. 25 (1991) 59-85]. The solutions display more regularity in the 2D case. The methods also give a simpler proof of the basic existence result of Kazhikhov.  相似文献   

19.
The existence of a solution to the parabolic system with the fractional Laplacian (-△) α/2, α 〉 0 is proven, this solution decays at different rates along different time sequences going to infinity. As an application, the existence of a solution to the generalized Navier-Stokes equations is proven, which decays at different rates along different time sequences going to infinity. The generalized Navier-Stokes equations are the equations resulting from replacing -△ in the Navier-Stokes equations by (-△)^m, m〉 0. At last, a similar result for 3-D incompressible anisotropic Navier-Stokes system is obtained.  相似文献   

20.
一类修正的Navier-Stokes方程的长时间性态   总被引:3,自引:0,他引:3  
该文主要讨论,Rn上一类修正的 Navier-Stokes 方程弱解的长时间性态, 通过进一步改进Fourier分解方法, 得到了当初速度u0∈ L2 ∩L1时其弱解在L2 范数下的最优衰减率为 (1+t)n/4 同时该文也给出了修正的Navier-Stokes 方程与经典Navier-Stokes 方程的误差估计.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号