首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radka Keslerová  Karel Kozel 《PAMM》2008,8(1):10181-10182
The work deals with numerical modelling of 2D/3D laminar incompressible viscous flows for Newtonian and non–Newtonian fluids. The unsteady system of Navier–Stokes equations with steady boundary conditions in the form of an artificial compressibility method is solved by multistage Runge–Kutta finite volume method. Steady state solution is achieved for t→∞. Convergence is followed by steady residual behaviour. For unsteady solution high compressibility coefficient β2 is considered. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
We consider a boundary-value problem describing the motion of viscous, incompressible and heat-conducting fluids in a bounded domain in ?3. We admit non-homogeneous boundary conditions, the appearance of exterior forces and heat sources. Our aim is to prove the existence of a solution of the problem in Sobolev spaces.  相似文献   

3.
In this paper, the authors study the large time behavior for the weak solutions to a class system of the incompressible non-Newtonian fluids in R2. It is proved that the weak solutions decay in L2 norm at (1+t)−1/2 and the estimate for the decay rate is sharp in the sense that it coincides with the decay rate of a solution to the heat equation.  相似文献   

4.
A new theorem on abstract nonlinear equations of evolution is proved. As an application, the existence, uniqueness, regularity, and continuous dependence on the data are proved for the solution of the Euler equation for incompressible fluids in a bounded domain in Rm.  相似文献   

5.
This paper deals with the numerical solution of laminar viscous incompressible flows for generalized Newtonian fluids in the branching channel. The generalized Newtonian fluids contain Newtonian fluids, shear thickening and shear thinning non-Newtonian fluids. The mathematical model is the generalized system of Navier-Stokes equations. The finite volume method combined with an artificial compressibility method is used for spatial discretization. For time discretization the explicit multistage Runge-Kutta numerical scheme is considered. Steady state solution is achieved for t → ∞ using steady boundary conditions and followed by steady residual behavior. For unsteady solution a dual-time stepping method is considered. Numerical results for flows in two dimensional and three dimensional branching channel are presented.  相似文献   

6.
We study an initial-boundary-value problem for time-dependent flows of heat-conducting viscous incompressible fluids in channel-like domains on a time interval (0,T). For the parabolic system with strong nonlinearities and including the artificial (the so called “do nothing”) boundary conditions, we prove the local in time existence, global uniqueness and smoothness of the solution on a time interval (0,T ), where 0<T T.  相似文献   

7.
The flow of two immiscible and incompressible fluids in a porous medium is described by a system of quasilinear degenerate partial differential equations. In this paper the existence of a weak solution by regularization is shown.  相似文献   

8.
We present a global existence theory for strong solution to the Cucker–Smale–Navier–Stokes system in a periodic domain, when initial data is sufficiently small. To model interactions between flocking particles and an incompressible viscous fluid, we couple the kinetic Cucker–Smale model and the incompressible Navier–Stokes system using a drag force mechanism that is responsible for the global flocking between particles and fluids. We also revisit the emergence of time-asymptotic flocking via new functionals measuring local variances of particles and fluid around their local averages and the distance between local averages velocities. We show that the particle and fluid velocities are asymptotically aligned to the common velocity, when the viscosity of the incompressible fluid is sufficiently large compared to the sup-norm of the particles' local mass density.  相似文献   

9.
We consider the equations of motion to slightly compressible fluids and we prove that solutions converge, in the strong norm, to the solution of the equations of motion of incompressible fluids, as the Mach number goes to zero. From a physical point of view this means the following. Assume that we are dealing with a well-specified fluid, so slightly compressible that we assume it to be incompressible. Our result means that the distance between the (continuous) trajectories of the real and of the idealized solution is ‘small’ with respect to the natural metric, i.e. the metric that endows the data space.  相似文献   

10.
We give an overview on the solution of the stationary Navier-Stokes equations for non newtonian incompressible fluids established by G. Dias and M.M. Santos (Steady flow for shear thickening fluids with arbitrary fluxes, J. Differential Equations 252 (2012), no. 6, 3873-3898), propose a definition for domains with unbounded curved channels which encompasses domains with an unbounded boundary, domains with nozzles, and domains with a boundary being a punctured surface, and argue on the existence of steady flowfor incompressible fluids with arbitrary fluxes in such domains.  相似文献   

11.
We investigate global strong solutions for isentropic compressible fluids with initial data close to a stable equilibrium. We obtain the existence and uniqueness of a solution in a functional setting invariant by the scaling of the associated equations. More precisely, the initial velocity has the same critical regularity index as for the incompressible homogeneous Navier-Stokes equations, and one more derivative is needed for the density. We point out a smoothing effect on the velocity and a L 1-decay on the difference between the density and the constant reference state. The proof lies on uniform estimates for a mixed hyperbolic/parabolic linear system with a convection term. Oblatum 9-II-1999 & 6-I-2000?Published online: 29 March 2000  相似文献   

12.
We consider an initial boundary value problem for the system of equations describing non-stationary flows of incompressible asymmetric fluids. We prove the existence of a local in time, weak solution of the problem in the case when the initial density is not separated from zero by a positive constant.  相似文献   

13.
We establish the existence of local in time semi‐strong solutions and global in time strong solutions for the system of equations describing flows of viscous and incompressible asymmetric fluids with variable density in general three‐dimensional domains with boundary uniformly of class C3. Under suitable assumptions, uniqueness of local semi‐strong solutions is also proved. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
We prove global-in-time existence of regular solution to the initial value problem of a 2-D Kazhikhov–Smagulov type model for incompressible nonhomogeneous fluids with mass diffusion.  相似文献   

15.
The velocity field corresponding to the Rayleigh–Stokes problem for an edge, in an incompressible generalized Oldroyd-B fluid has been established by means of the double Fourier sine and Laplace transforms. The fractional calculus approach is used in the constitutive relationship of the fluid model. The obtained solution, written in terms of the generalized G-functions, is presented as a sum of the Newtonian solution and the corresponding non-Newtonian contribution. The solution for generalized Maxwell fluids, as well as those for ordinary Maxwell and Oldroyd-B fluids, performing the same motion, is obtained as a limiting case of the present solution. This solution can be also specialized to give the similar solution for generalized second grade fluids. However, for simplicity, a new and simpler exact solution is established for these fluids. For β → 1, this last solution reduces to a previous solution obtained by a different technique.  相似文献   

16.
We are concerned with the existence and uniqueness of local or global solutions for slightly compressible viscous fluids in the whole space. In [6] and [7], we proved local and global well-posedness results for initial data in critical spaces very close to the one used by H. Fujita and T. Kato for incompressible flows (see [14]). In the present paper, we address the question of convergence to the incompressible model (for ill-prepared initial data) when the Mach number goes to zero. When the initial data are small in a critical space, we get global existence and convergence. For large initial data and a bit of additional regularity, the slightly compressible solution is shown to exist as long as the corresponding incompressible solution does. As a corollary, we get global existence (and uniqueness) for slightly compressible two-dimensional fluids.  相似文献   

17.
We study the asymptotic behaviour in time of incompressible non‐Newtonian fluids in the whole space assuming that initial data also belong to L1. Firstly, we consider the weak solution to the power‐law model with non‐zero external forces and we find the asymptotic behaviour in time of this solution in the same class of existence and uniqueness with p?. Secondly, we are interested in the asymptotic behaviour of weak solutions to the second grade model, and finally, we deal with the asymptotic behaviour in time of weak solutions to a simplified model of viscoelastic fluids of the Oldroyd type. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
The velocity field corresponding to the Rayleigh–Stokes problem for an edge, in an incompressible generalized Oldroyd-B fluid has been established by means of the double Fourier sine and Laplace transforms. The fractional calculus approach is used in the constitutive relationship of the fluid model. The obtained solution, written in terms of the generalized G-functions, is presented as a sum of the Newtonian solution and the corresponding non-Newtonian contribution. The solution for generalized Maxwell fluids, as well as those for ordinary Maxwell and Oldroyd-B fluids, performing the same motion, is obtained as a limiting case of the present solution. This solution can be also specialized to give the similar solution for generalized second grade fluids. However, for simplicity, a new and simpler exact solution is established for these fluids. For β → 1, this last solution reduces to a previous solution obtained by a different technique.   相似文献   

19.
We consider the stationary equations for a non-isothermal Newtonian and incompressible fluids, in a three-dimensional bounded domain. The problem is governed by a coupled system involving a balance of linear momentum and the heat energy with Tresca free boundary friction conditions. Existence, uniqueness and regularity of the weak solution to this coupled problem are proved.  相似文献   

20.
In this paper, the authors consider the zero-viscosity limit of the three dimensional incompressible steady Navier-Stokes equations in a half space R+×R2. The result shows that the solution of three dimensional incompressible steady Navier-Stokes equations converges to the solution of three dimensional incompressible steady Euler equations in Sobolev space as the viscosity coefficient going to zero. The method is based on a new weighted energy estimates and Nash-Moser itera...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号