首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the Iri-Imai algorithm for solving linear and convex quadratic programming is extended to solve some other smooth convex programming problems. The globally linear convergence rate of this extended algorithm is proved, under the condition that the objective and constraint functions satisfy a certain type of convexity, called the harmonic convexity in this paper. A characterization of this convexity condition is given. The same convexity condition was used by Mehrotra and Sun to prove the convergence of a path-following algorithm.The Iri-Imai algorithm is a natural generalization of the original Newton algorithm to constrained convex programming. Other known convergent interior-point algorithms for smooth convex programming are mainly based on the path-following approach.  相似文献   

2.
Because of the many important applications of quadratic programming, fast and efficient methods for solving quadratic programming problems are valued. Goldfarb and Idnani (1983) describe one such method. Well known to be efficient and numerically stable, the Goldfarb and Idnani method suffers only from the restriction that in its original form it cannot be applied to problems which are positive semi-definite rather than positive definite. In this paper, we present a generalization of the Goldfarb and Idnani method to the positive semi-definite case and prove finite termination of the generalized algorithm. In our generalization, we preserve the spirit of the Goldfarb and Idnani method, and extend their numerically stable implementation in a natural way. Supported in part by ATERB, NSERC and the ARC. Much of this work was done in the Department of Mathematics at the University of Western Australia and in the Department of Combinatorics and Optimization at the University of Waterloo.  相似文献   

3.
This paper derives new algorithms for signomial programming, a generalization of geometric programming. The algorithms are based on a generic principle for optimization called the MM algorithm. In this setting, one can apply the geometric-arithmetic mean inequality and a supporting hyperplane inequality to create a surrogate function with parameters separated. Thus, unconstrained signomial programming reduces to a sequence of one-dimensional minimization problems. Simple examples demonstrate that the MM algorithm derived can converge to a boundary point or to one point of a continuum of minimum points. Conditions under which the minimum point is unique or occurs in the interior of parameter space are proved for geometric programming. Convergence to an interior point occurs at a linear rate. Finally, the MM framework easily accommodates equality and inequality constraints of signomial type. For the most important special case, constrained quadratic programming, the MM algorithm involves very simple updates.  相似文献   

4.
A new descent algorithm for solving quadratic bilevel programming problems   总被引:2,自引:0,他引:2  
1. IntroductionA bilevel programming problem (BLPP) involves two sequential optimization problems where the constraint region of the upper one is implicitly determined by the solutionof the lower. It is proved in [1] that even to find an approximate solution of a linearBLPP is strongly NP-hard. A number of algorithms have been proposed to solve BLPPs.Among them, the descent algorithms constitute an important class of algorithms for nonlinear BLPPs. However, it is assumed for almost all…  相似文献   

5.
We show that SDP (semidefinite programming) and SOCP (second order cone programming) relaxations provide exact optimal solutions for a class of nonconvex quadratic optimization problems. It is a generalization of the results by S. Zhang for a subclass of quadratic maximization problems that have nonnegative off-diagonal coefficient matrices of quadratic objective functions and diagonal coefficient matrices of quadratic constraint functions. A new SOCP relaxation is proposed for the class of nonconvex quadratic optimization problems by extracting valid quadratic inequalities for positive semidefinite cones. Its effectiveness to obtain optimal values is shown to be the same as the SDP relaxation theoretically. Numerical results are presented to demonstrate that the SOCP relaxation is much more efficient than the SDP relaxation.  相似文献   

6.
宿洁 《运筹与管理》2007,16(2):60-64
主要研究了非增值型凸二次双层规划的一种有效求解算法。首先利用数学规划的对偶理论,将所求双层规划转化为一个下层只有一个无约束凸二次子规划的双层规划问题.然后根据两个双层规划的最优解和最优目标值之间的关系,提出一种简单有效的算法来解决非增值型凸二次双层规划问题.并通过数值算例的计算结果说明了该算法的可行性和有效性。  相似文献   

7.
This paper shows that the primal-dual steepest descent algorithm developed by Zhu and Rockafellar for large-scale extended linear—quadratic programming can be used in solving constrained minimax problems related to a generalC 2 saddle function. It is proved that the algorithm converges linearly from the very beginning of the iteration if the related saddle function is strongly convex—concave uniformly and the cross elements between the convex part and the concave part of the variables in its Hessian are bounded on the feasible region. Better bounds for the asymptotic rates of convergence are also obtained. The minimax problems where the saddle function has linear cross terms between the convex part and the concave part of the variables are discussed specifically as a generalization of the extended linear—quadratic programming. Some fundamental features of these problems are laid out and analyzed.This work was supported by Eliezer Naddor Postdoctoral Fellowship in Mathematical Sciences at the Department of Mathematical Sciences, the Johns Hopkins University during the year 1991–92.  相似文献   

8.
一个关于二次规划问题的分段线性同伦算法   总被引:1,自引:1,他引:0  
本文发展了一个关于二次规划问题的分段线性同伦算法。该算法可看作是外点罚函数法的一个变体。凡是符合外点罚函数法收敛条件的二次规划问题用该算法均可经有限次轮回运算得到稳定解。大量的关于随机的凸二次规划问题的数值实验结果表明它的计算效率是高的,在某些条件下可能是多项式时间算法。  相似文献   

9.
不等式约束二次规划的一新算法   总被引:3,自引:0,他引:3  
文献[1]提出了一般等式约束非线性规划问题一种求解途径.文献[2]应用这一途径给出了等式约束二次规划问题的一种算法,本文在文献[1]和[2]的基础上对不等式约束二次规划问题提出了一种新算法.  相似文献   

10.
The so called dual parameterization method for quadratic semi-infinite programming (SIP) problems is developed recently. A dual parameterization algorithm is also proposed for numerical solution of such problems. In this paper, we present and improved adaptive algorithm for quadratic SIP problems with positive definite objective and multiple linear infinite constraints. In each iteration of the new algorithm, only a quadratic programming problem with a limited dimension and a limited number of constraints is required to be solved. Furthermore, convergence result is given. The efficiency of the new algorithm is shown by solving a number of numerical examples.  相似文献   

11.
This paper evaluates an algorithm for solving network flow optimization problems with quadratic cost functions. Strategies for fast implementation are discussed and the results of extensive numerical tests are given. The performance of the algorithm measured by CPU time is compared with that of the convex simplex method specialized for quadratic network programming. Performance of the two methods is analysed with respect to network size and density, and other parameters of interest. The algorithm is shown to perform significantly better on the majority of problems. We also show how the algorithm may be used to solve non-linear convex network optimization problems by the use of sequential quadratic programming.  相似文献   

12.
A quadratic programming algorithm is presented, resembling Beale's 1955 quadratic programming algorithm and Wolfe's Reduced Gradient method. It uses conjugate search directions. The algorithm is conceived as being particularly appropriate for problems with a large Hessian matrix. An experimental computer program has been written to validate the concepts, and has performed adequately, although it has not been used on very large problems. An outline of the solution to the quadratic capacity-constrained transportation problem using the above method is also presented.While engaged in this research the author had a part-time post with the Manpower Services Commission.  相似文献   

13.
For current sequential quadratic programming (SQP) type algorithms, there exist two problems: (i) in order to obtain a search direction, one must solve one or more quadratic programming subproblems per iteration, and the computation amount of this algorithm is very large. So they are not suitable for the large-scale problems; (ii) the SQP algorithms require that the related quadratic programming subproblems be solvable per iteration, but it is difficult to be satisfied. By using ε-active set procedure with a special penalty function as the merit function, a new algorithm of sequential systems of linear equations for general nonlinear optimization problems with arbitrary initial point is presented. This new algorithm only needs to solve three systems of linear equations having the same coefficient matrix per iteration, and has global convergence and local superlinear convergence. To some extent, the new algorithm can overcome the shortcomings of the SQP algorithms mentioned above. Project partly supported by the National Natural Science Foundation of China and Tianyuan Foundation of China.  相似文献   

14.
This article describes a new algorithm for the computation of consistent initial values for differential-algebraic equations (DAEs). The main idea is to formulate the task as a constrained optimization problem in which, for the differentiated components, the computed consistent values are as close as possible to user-given guesses. The generalization to compute Taylor coefficients results immediately, whereas the amount of consistent coefficients will depend on the size of the derivative array and the index of the DAE. The algorithm can be realized using automatic differentiation (AD) and sequential quadratic programming (SQP). The implementation in Python using AlgoPy and SLSQP has been tested successfully for several higher index problems.  相似文献   

15.
Extended Linear-Quadratic Programming (ELQP) problems were introduced by Rockafellar and Wets for various models in stochastic programming and multistage optimization. Several numerical methods with linear convergence rates have been developed for solving fully quadratic ELQP problems, where the primal and dual coefficient matrices are positive definite. We present a two-stage sequential quadratic programming (SQP) method for solving ELQP problems arising in stochastic programming. The first stage algorithm realizes global convergence and the second stage algorithm realizes superlinear local convergence under a condition calledB-regularity.B-regularity is milder than the fully quadratic condition; the primal coefficient matrix need not be positive definite. Numerical tests are given to demonstrate the efficiency of the algorithm. Solution properties of the ELQP problem underB-regularity are also discussed.Supported by the Australian Research Council.  相似文献   

16.
Efficient sequential quadratic programming (SQP) implementations are presented for equality-constrained, discrete-time, optimal control problems. The algorithm developed calculates the search direction for the equality-based variant of SQP and is applicable to problems with either fixed or free final time. Problem solutions are obtained by solving iteratively a series of constrained quadratic programs. The number of mathematical operations required for each iteration is proportional to the number of discrete times N. This is contrasted by conventional methods in which this number is proportional to N 3. The algorithm results in quadratic convergence of the iterates under the same conditions as those for SQP and simplifies to an existing dynamic programming approach when there are no constraints and the final time is fixed. A simple test problem and two application problems are presented. The application examples include a satellite dynamics problem and a set of brachistochrone problems involving viscous friction.  相似文献   

17.
This paper represents an inexact sequential quadratic programming (SQP) algorithm which can solve nonlinear programming (NLP) problems. An inexact solution of the quadratic programming subproblem is determined by a projection and contraction method such that only matrix-vector product is required. Some truncated criteria are chosen such that the algorithm is suitable to large scale NLP problem. The global convergence of the algorithm is proved.  相似文献   

18.
Multibody elastic contact analysis by quadratic programming   总被引:1,自引:0,他引:1  
A quadratic programming method for contact problems is extended to a general problem involving contact ofn elastic bodies. Sharp results of quadratic programming theory provide an equivalence between the originaln-body contact problem and the simplex algorithm used to solve the quadratic programming problem. Two multibody examples are solved to illustrate the technique.  相似文献   

19.
This paper is concerned with nonlinear, semidefinite, and second-order cone programs. A general algorithm, which includes sequential quadratic programming and sequential quadratically constrained quadratic programming methods, is presented for solving these problems. In the particular case of standard nonlinear programs, the algorithm can be interpreted as a prox-regularization of the Solodov sequential quadratically constrained quadratic programming method presented in Mathematics of Operations Research (2004). For such type of methods, the main cost of computation amounts to solve a linear cone program for which efficient solvers are available. Usually, “global convergence results” for these methods require, as for the Solodov method, the boundedness of the primal sequence generated by the algorithm. The other purpose of this paper is to establish global convergence results without boundedness assumptions on any of the iterative sequences built by the algorithm.  相似文献   

20.
A new deterministic algorithm for solving convex mixed-integer nonlinear programming (MINLP) problems is presented in this paper: The extended supporting hyperplane (ESH) algorithm uses supporting hyperplanes to generate a tight overestimated polyhedral set of the feasible set defined by linear and nonlinear constraints. A sequence of linear or quadratic integer-relaxed subproblems are first solved to rapidly generate a tight linear relaxation of the original MINLP problem. After an initial overestimated set has been obtained the algorithm solves a sequence of mixed-integer linear programming or mixed-integer quadratic programming subproblems and refines the overestimated set by generating more supporting hyperplanes in each iteration. Compared to the extended cutting plane algorithm ESH generates a tighter overestimated set and unlike outer approximation the generation point for the supporting hyperplanes is found by a simple line search procedure. In this paper it is proven that the ESH algorithm converges to a global optimum for convex MINLP problems. The ESH algorithm is implemented as the supporting hyperplane optimization toolkit (SHOT) solver, and an extensive numerical comparison of its performance against other state-of-the-art MINLP solvers is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号