首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 627 毫秒
1.
This paper suggests an iterative parametric approach for solving multiobjective linear fractional programming (MOLFP) problems which only uses linear programming to obtain efficient solutions and always converges to an efficient solution. A numerical example shows that this approach performs better than some existing algorithms. Randomly generated MOLFP problems are also solved to demonstrate the performance of new introduced algorithm.  相似文献   

2.
This paper proposes an unconstrained dual approach and an efficient algorithm for solving Karmarkar-type linear programming problems. Conventional barrier functions are incorporated as a perturbation term in the derivation of the associated duality theory. An optimal solution of the original linear program can be obtained by solving a sequence of unconstrained concave programs, or be approximated by solving one such dual program with a sufficiently small perturbation parameter. A globally convergent curved-search algorithm with a quadratic rate of convergence is designed for this purpose. Based on our testing results, we find that the computational procedure is very efficient and can be a viable approach for solving linear programming problems.  相似文献   

3.
凹整数规划的分枝定界解法   总被引:3,自引:0,他引:3  
凹整数规划是一类重要的非线性整数规划问题,也是在经济和管理中有着广泛应用的最优化问题.本文主要研究用分枝定界方法求解凹整数规划问题,这一方法的基本思想是对目标函数进行线性下逼近,然后用乘子搜索法求解连续松弛问题.数值结果表明,用这种分枝定界方法求解凹整数规划是有效的.  相似文献   

4.
研究了线性半向量二层规划问题的全局优化方法. 利用下层问题的对偶间隙构造了线性半向量二层规划问题的罚问题, 通过分析原问题的最优解与罚问题可行域顶点之间的关系, 将线性半向量二层规划问题转化为有限个线性规划问题, 从而得到线性半向量二层规划问题的全局最优解. 数值结果表明所设计的全局优化方法对线性半向量二层规划问题是可行的.  相似文献   

5.
This paper deals with exploiting symmetry for solving linear and integer programming problems. Basic properties of linear representations of finite groups can be used to reduce symmetric linear programming to solving linear programs of lower dimension. Combining this approach with knowledge of the geometry of feasible integer solutions yields an algorithm for solving highly symmetric integer linear programs which only takes time which is linear in the number of constraints and quadratic in the dimension.  相似文献   

6.
The majority of research on bilevel programming has centered on the linear version of the problem in which only one leader and one follower are involved. This paper addresses linear bilevel multi-follower programming (BLMFP) problems in which there is no sharing information among followers. It explores the theoretical properties of linear BLMFP, extends the Kth-best approach for solving linear BLMFP problems and gives a computational test for this approach.  相似文献   

7.
In this paper a linear programming-based optimization algorithm called the Sequential Cutting Plane algorithm is presented. The main features of the algorithm are described, convergence to a Karush–Kuhn–Tucker stationary point is proved and numerical experience on some well-known test sets is showed. The algorithm is based on an earlier version for convex inequality constrained problems, but here the algorithm is extended to general continuously differentiable nonlinear programming problems containing both nonlinear inequality and equality constraints. A comparison with some existing solvers shows that the algorithm is competitive with these solvers. Thus, this new method based on solving linear programming subproblems is a good alternative method for solving nonlinear programming problems efficiently. The algorithm has been used as a subsolver in a mixed integer nonlinear programming algorithm where the linear problems provide lower bounds on the optimal solutions of the nonlinear programming subproblems in the branch and bound tree for convex, inequality constrained problems.  相似文献   

8.
The most popular approach to handle the challenge of solving fuzzy linear programming problems is to convert the fuzzy linear programming into the corresponding deterministic linear programming. Mahdavi-Amiri and Nasseri [15,16] developed the fuzzy dual simplex algorithm to fuzzy linear programming with fuzzy parameters. In this paper, we use the complementary slackness to solve it without the need of a simplex tableau.  相似文献   

9.
在本文中,基于神经网络,提出了一类求解具有线性约束区间二次规划问题的方法,使用增广拉格朗日函数,建立了求解规划问题的神经网络模型。基于压缩不动点理论,证明了所提出神经网络的平衡点就是等式约束区间二次规划问题的最优解。使用适当的Lyapunov函数,证明了所提出的神经网络的平衡点是全局指数稳定的。最后,两个数值仿真结果验证了本文所用方法的可行性与有效性。  相似文献   

10.
In this paper we develop a new procedure to control stepsize for linear multistep methods applied to semi-explicit index 1 differential-algebraic equations. In contrast to the standard approach, the error control mechanism presented here is based on monitoring and controlling both the local and global errors of multistep formulas. As a result, such methods with the local-global stepsize control solve differential-algebraic equations with any prescribed accuracy (up to round-off errors). For implicit multistep methods we give the minimum number of both full and modified Newton iterations allowing the iterative approximations to be correctly used in the procedure of the local-global stepsize control. We also discuss validity of simple iterations for high accuracy solving differential-algebraic equations. Numerical tests support the theoretical results of the paper.  相似文献   

11.
基于多参数线性规划理论,将不确定型二层线性规划问题转化为多个关于不确定参数的线性规划问题。利用不确定型决策方法中的悲观准则.从最不利的结果中选择最有利的结果,从而得到不确定型二层线性规划的最优解。数值实例的仿真结果表明,所提出的悲观决策方法对解决诸如不确定供应链的规划与运作等问题不失为一种有效的决策支持工具。  相似文献   

12.
多表旋转算法是一种基于旋转算法来求解线性二层规划问题的方法,通过表格组合还可以求解线性多层规划、以及线性一主多从有关联的stackelberg-nash均衡等问题,求解的思想是使用旋转算法,在多个主体间通过约束传递达到均衡。通过算例显示该方法可以迅速地算出局部最优解,如果问题的诱导域是连通的,还可以计算出全局最优解。  相似文献   

13.
The “relaxation” procedure introduced by Held and Karp for approximately solving a large linear programming problem related to the traveling-salesman problem is refined and studied experimentally on several classes of specially structured large-scale linear programming problems, and results on the use of the procedure for obtaining exact solutions are given. It is concluded that the method shows promise for large-scale linear programming  相似文献   

14.
It is shown that parametric linear programming algorithms work efficiently for a class of nonconvex quadratic programming problems called generalized linear multiplicative programming problems, whose objective function is the sum of a linear function and a product of two linear functions. Also, it is shown that the global minimum of the sum of the two linear fractional functions over a polytope can be obtained by a similar algorithm. Our numerical experiments reveal that these problems can be solved in much the same computational time as that of solving associated linear programs. Furthermore, we will show that the same approach can be extended to a more general class of nonconvex quadratic programming problems.  相似文献   

15.
In this article we look at a new algorithm for solving convex mixed integer nonlinear programming problems. The algorithm uses an integrated approach, where a branch and bound strategy is mixed with solving nonlinear programming problems at each node of the tree. The nonlinear programming problems, at each node, are not solved to optimality, rather one iteration step is taken at each node and then branching is applied. A Sequential Cutting Plane (SCP) algorithm is used for solving the nonlinear programming problems by solving a sequence of linear programming problems. The proposed algorithm generates explicit lower bounds for the nodes in the branch and bound tree, which is a significant improvement over previous algorithms based on QP techniques. Initial numerical results indicate that the described algorithm is a competitive alternative to other existing algorithms for these types of problems.  相似文献   

16.
This paper addresses itself to the algorithm for minimizing the sum of a convex function and a product of two linear functions over a polytope. It is shown that this nonconvex minimization problem can be solved by solving a sequence of convex programming problems. The basic idea of this algorithm is to embed the original problem into a problem in higher dimension and apply a parametric programming (path following) approach. Also it is shown that the same idea can be applied to a generalized linear fractional programming problem whose objective function is the sum of a convex function and a linear fractional function.  相似文献   

17.
The paper considers solving of linear programming problems with p-order conic constraints that are related to a certain class of stochastic optimization models with risk objective or constraints. The proposed approach is based on construction of polyhedral approximations for p-order cones, and then invoking a Benders decomposition scheme that allows for efficient solving of the approximating problems. The conducted case study of portfolio optimization with p-order conic constraints demonstrates that the developed computational techniques compare favorably against a number of benchmark methods, including second-order conic programming methods.  相似文献   

18.
In this paper, the Iri-Imai algorithm for solving linear and convex quadratic programming is extended to solve some other smooth convex programming problems. The globally linear convergence rate of this extended algorithm is proved, under the condition that the objective and constraint functions satisfy a certain type of convexity, called the harmonic convexity in this paper. A characterization of this convexity condition is given. The same convexity condition was used by Mehrotra and Sun to prove the convergence of a path-following algorithm.The Iri-Imai algorithm is a natural generalization of the original Newton algorithm to constrained convex programming. Other known convergent interior-point algorithms for smooth convex programming are mainly based on the path-following approach.  相似文献   

19.
In the real world there are many linear programming problems where all decision parameters are fuzzy numbers. Several approaches exist which use different ranking functions for solving these problems. Unfortunately when there exist alternative optimal solutions, usually with different fuzzy value of the objective function for these solutions, these methods can not specify a clear approach for choosing a solution. In this paper we propose a method to remove the above shortcoming in solving fuzzy number linear programming problems using the concept of expectation and variance as ranking functions.  相似文献   

20.
《Applied Mathematical Modelling》2014,38(5-6):1607-1611
In this paper, He’s homotopy perturbation method (HPM) is applied for solving linear programming (LP) problems. This paper shows that some recent findings about this topic cannot be applied for all cases. Furthermore, we provide the correct application of HPM for LP problems. The proposed method has a simple and graceful structure. Finally, a numerical example is displayed to illustrate the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号