首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper, we consider the following nonlinear fractional three-point boundary-value problem:
*20c D0 + a u(t) + f( t,u(t) ) = 0,    0 < t < 1, u(0) = u¢(0) = 0,    u¢(1) = ò0h u(s)\textds, \begin{array}{*{20}{c}} {D_{0 + }^\alpha u(t) + f\left( {t,u(t)} \right) = 0,\,\,\,\,0 < t < 1,} \\ {u(0) = u'(0) = 0,\,\,\,\,u'(1) = \int\limits_0^\eta {u(s){\text{d}}s,} } \\ \end{array}  相似文献   

2.
For the Lidstone boundary-value problem
*20c u(4) + q(t)u = f(t),   0 < t < 1, u(0) = u"(0) = u(1) = u"(1) = 0 \begin{array}{*{20}{c}} {{u^{(4)}} + q(t)u = f(t),\,\,\,0 < t < 1,} \\ {u(0) = u'(0) = u(1) = u'(1) = 0} \\ \end{array}  相似文献   

3.
We consider the existence of nontrivial solutions of the boundary-value problems for nonlinear fractional differential equations
*20c Da u(t) + l[ f( t,u(t) ) + q(t) ] = 0,    0 < t < 1, u(0) = 0,    u(1) = bu(h), \begin{array}{*{20}{c}} {{{\mathbf{D}}^\alpha }u(t) + {{\lambda }}\left[ {f\left( {t,u(t)} \right) + q(t)} \right] = 0,\quad 0 < t < 1,} \\ {u(0) = 0,\quad u(1) = \beta u(\eta ),} \\ \end{array}  相似文献   

4.
Qingliu Yao 《Acta Appl Math》2010,110(2):871-883
This paper studies the existence of a positive solution to the second-order periodic boundary value problem
u¢¢(t)+l(t)u(t)=f(t,u(t)),    0 < t < 2p,  u(0)=u(2p), u(0)=u(2p),u^{\prime \prime }(t)+\lambda (t)u(t)=f\bigl(t,u(t)\bigr),\quad 0相似文献   

5.
This paper deals with the initial value problem of the type
\frac?u(t,x) ?t = Lu(t,x),     u(0,x) = u0(x)\frac{\partial u(t,x)} {\partial t} = {\mathcal{L}}u(t,x), \quad u(0,x) = u_{0}(x)  相似文献   

6.
We study the long-term behaviour of the parabolic evolution equation $\[u'(t)=A(t)u(t)+f(t), t>s,\quad u(s)=x. \]$\[u'(t)=A(t)u(t)+f(t), t>s,\quad u(s)=x. \] If A(t) A(t) converges to a sectorial operator A with s(A)?i \Bbb R = ? \sigma(A)\cap i \Bbb R =\emptyset as t?¥ t\to\infty , then the evolution family solving the homogeneous problem has exponential dichotomy. If also f(t)? f f(t)\to f_\infty , then the solution u converges to the 'stationary solution at infinity', i.e., limt?¥u(t) = -A\sp-1f=:u,        limt?¥u¢(t)=0,        limt?¥A(t)u(t)=Au. \lim_{t\to\infty}u(t)= -A\sp{-1}f_\infty=:u_\infty, \qquad \lim_{t\to\infty}u'(t)=0, \qquad \lim_{t\to\infty}A(t)u(t)=Au_\infty. .  相似文献   

7.
Nonimprovable, in a sense sufficient conditions guaranteeing the unique solvability of the problem
u¢(t) = l(u)(t) + q(t),\text u(a) = c,u'(t) = \ell (u)(t) + q(t),{\text{ }}u(a) = c,  相似文献   

8.
In this paper we establish some oscillation or nonoscillation criteria for the second order half-linear differential equation
where (i) r,cC([t 0, ∞), ℝ := (− ∞, ∞)) and r(t) > 0 on [t 0, ∞) for some t 0 ⩾ 0; (ii) Φ(u) = |u|p−2 u for some fixed number p > 1. We also generalize some results of Hille-Wintner, Leighton and Willet.  相似文献   

9.
The following system considered in this paper:
x¢ = - e(t)x + f(t)fp*(y),        y¢ = - (p-1)g(t)fp(x) - (p-1)h(t)y,x' = -\,e(t)x + f(t)\phi_{p^*}(y), \qquad y'= -\,(p-1)g(t)\phi_p(x) - (p-1)h(t)y,  相似文献   

10.
We study the boundary-value problem of determining the parameter p of a parabolic equation
v(t) + Av(t) = f(t) + p,    0 \leqslant t \leqslant 1,    v(0) = j,     v(1) = y, v^{\prime}(t) + Av(t) = f(t) + p,\quad 0 \leqslant t \leqslant 1,\quad v(0) = \varphi, \quad v(1) = \psi,  相似文献   

11.
In this paper we consider a nonlinear evolution reaction–diffusion system governed by multi-valued perturbations of m-dissipative operators, generators of nonlinear semigroups of contractions. Let X and Y be real Banach spaces, ${\mathcal{K}}In this paper we consider a nonlinear evolution reaction–diffusion system governed by multi-valued perturbations of m-dissipative operators, generators of nonlinear semigroups of contractions. Let X and Y be real Banach spaces, K{\mathcal{K}} be a nonempty and locally closed subset in \mathbbR ×X×YA:D(A) í X\rightsquigarrow X, B:D(B) í Y\rightsquigarrow Y{\mathbb{R} \times X\times Y,\, A:D(A)\subseteq X\rightsquigarrow X, B:D(B)\subseteq Y\rightsquigarrow Y} two m-dissipative operators, F:K ? X{F:\mathcal{K} \rightarrow X} a continuous function and G:K \rightsquigarrow Y{G:\mathcal{K} \rightsquigarrow Y} a nonempty, convex and closed valued, strongly-weakly upper semi-continuous (u.s.c.) multi-function. We prove a necessary and a sufficient condition in order that for each (t,x,h) ? K{(\tau,\xi,\eta)\in \mathcal{K}}, the next system
{ lc u¢(t) ? Au(t)+F(t,u(t),v(t))    t 3 tv¢(t) ? Bv(t)+G(t,u(t),v(t))    t 3 tu(t)=x,    v(t)=h, \left\{ \begin{array}{lc} u'(t)\in Au(t)+F(t,u(t),v(t))\quad t\geq\tau \\ v'(t)\in Bv(t)+G(t,u(t),v(t))\quad t\geq\tau \\ u(\tau)=\xi,\quad v(\tau)=\eta, \end{array} \right.  相似文献   

12.
In this paper we study the following non-autonomous stochastic evolution equation on a Banach space E: $({\rm SE})\quad \left\{\begin{array}{ll} {\rm d}U(t) = (A(t)U(t) +F(t,U(t)))\,{\rm d}t + B(t,U(t))\,{\rm d}W_H(t), \quad t\in [0,T], \\ U(0) = u_0.\end{array}\right.$ Here, ${(A(t))_{t\in [0,T]}}In this paper we study the following non-autonomous stochastic evolution equation on a Banach space E:
(SE)    {ll dU(t) = (A(t)U(t) +F(t,U(t))) dt + B(t,U(t)) dWH(t),     t ? [0,T], U(0) = u0.({\rm SE})\quad \left\{\begin{array}{ll} {\rm d}U(t) = (A(t)U(t) +F(t,U(t)))\,{\rm d}t + B(t,U(t))\,{\rm d}W_H(t), \quad t\in [0,T], \\ U(0) = u_0.\end{array}\right.  相似文献   

13.
. We consider the nonlinear Sturm-Liouville problem¶¶-u"(t) = | u(t) | p-1u(t) - lu(t), t ? I :=(0,1), u(0) = u(1) = 0 -u'(t) = \mid u(t)\mid^{p-1}u(t) - \lambda u(t), t \in I :=(0,1), u(0) = u(1) = 0 ,¶¶ where p > 1 and l ? R \lambda \in {\bf R} is an eigenvalue parameter. To investigate the global L2-bifurcation phenomena, we establish asymptotic formulas for the n-th bifurcation branch l = ln (a) \lambda = \lambda_n (\alpha) with precise remainder term, where a \alpha is the L2 norm of the eigenfunction associated with l \lambda .  相似文献   

14.
We show that any entropy solution u of a convection diffusion equation ?t u + div F(u)-Df(u) = b{\partial_t u + {\rm div} F(u)-\Delta\phi(u) =b} in Ω × (0, T) belongs to C([0,T),L1loc(W)){C([0,T),L^1_{\rm loc}({\Omega}))} . The proof does not use the uniqueness of the solution.  相似文献   

15.
This paper treats the rich mathematical structure of the (dimensionless) equation of motion governing the behavior of an elastically restrained simple pendulum subject to a downward force of magnitude f(t) applied to its bob with $\dot{f}(t)>0$\dot{f}(t)>0 for all t>0 and f(t)→∞ as t→∞:
[(q)\ddot]+2n[(q)\dot] +q = f(t)sinq.\ddot{\theta}+2\nu\dot{\theta} +\theta= f(t)\sin\theta.  相似文献   

16.
In this paper we study the quenching problem for the non-local diffusion equation
ut(x,t) = òW J(x - y)u(y,t)dy + ò\mathbbRN\W J(x - y)dy - u(x,t) - lu - p(x,t) {u_t}(x,t) = \int\limits_\Omega {J(x - y)u(y,t)dy + \int\limits_{{\mathbb{R}^N}\backslash \Omega } {J(x - y)dy - u(x,t) - \lambda {u^{ - p}}(x,t)} }  相似文献   

17.
We consider a class of nonlinear degenerate problems of Stefan type: $u_t- \Delta w -\nabla F(u,w)= g(\cdot,u), \ w\in \beta(u)$ where β is a maximal monotone graph in ${\mathbb{R}^2,}We consider a class of nonlinear degenerate problems of Stefan type:
ut- Dw -?F(u,w) = g(·,u),  w ? b(u)u_t- \Delta w -\nabla F(u,w)= g(\cdot,u), \ w\in \beta(u)  相似文献   

18.
We study a rate of convergence appearing in the long-time behavior of viscosity solutions of the Cauchy problem for the Hamilton–Jacobi equation
ut(x,t)+ax ·Du(x,t)+b|Du(x,t)|2=f(x)   in \mathbb Rn×(0,¥),u_t(x,t)+\alpha x \cdot Du(x,t)+\beta|Du(x,t)|^2=f(x)\quad{\rm{in}}\,{{\mathbb R}^n}\times(0,\infty),  相似文献   

19.
This work is concerned with the fast diffusion equation
ut = ?·(um-1 ?u)        (*) u_t = \nabla \cdot \big(u^{m-1} \nabla u\big) \qquad (\star)  相似文献   

20.
In this paper we study the boundary limit properties of harmonic functions on ℝ+×K, the solutions u(t,x) to the Poisson equation
\frac?2 u?t2 + Du = 0,\frac{\partial^2 u}{\partial t^2} + \Delta u = 0,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号