首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
矩形弹性夹杂与裂纹相互干扰的边界元分析   总被引:1,自引:0,他引:1  
使用边界元法研究了无限弹性体中矩形弹性夹杂对曲折裂纹的影响,导出了新的复边界积分方程.通过引入与界面位移密度和面力有关的未知复函数H(t),并使用分部积分技巧,使得夹杂和基体界面处的面力连续性条件自动满足,而边界积分方程减少为2个,且只具有1/r阶奇异性.为了检验该边界元法的正确性和有效性,对典型问题进行了数值计算.所得结果表明:裂纹的应力强度因子随着夹杂弹性模量的增大而减小,软夹杂有利于裂纹的扩展,而刚性较大的夹杂对裂纹有抑制作用.  相似文献   

2.
通过引入伸展变量和非常规的渐近序列{∈}),运用合成展开法,对一类具非线性边界条件的非线性高阶微分方程的奇摄动问题构造了形式渐近解,再运用微分不等式理论证明了原问题解的存在性及所得渐近近似式的一致有效性.  相似文献   

3.
陈珍培 《大学数学》2015,31(1):121-123
利用向量和定积分的知识,解决了空间曲线绕任意轴旋转所得旋转面的面积计算问题,给出了旋转面面积的简明计算公式,并借助实例进行说明.  相似文献   

4.
利用Stroh方法,研究了含双边固定导电裂纹的二维压电体在广义线力作用下的Green函数.首先分析的是因压电性和边界极化电荷所引起的作用在自由电荷上的Coulomb力.然后,再分析了双边裂纹附近的两个奇异点之间的相互作用问题(其中,至少一个奇异点处存在自由电荷).数值计算表明:当两个或多个奇点互相靠近且奇点中至少存在一个自由电荷时,Coulomb力将明显影响压电介质内的力电场,这时的Coulomb力将不能再被忽略掉.所得结果不仅适用于平面和反平面问题,也适用于面内变形与面外变形相耦合的情况.  相似文献   

5.
给出并证明了曲线(实)积分可用亚纯函数的留数进行计算的充分条件,实例演示了所得结论在曲线(实)积分计算方面的应用.  相似文献   

6.
研究一类含有两个参数和有理奇性平面哈密顿系统的同宿与异宿轨道,该问题来源于一个关于聚合物流体剪切流动特性的研究.借助常微定性理论和不变流形分析的方法,文中给出了系统存在同宿与异宿轨道的条件,并通过数值计算检验了所得理论结果。  相似文献   

7.
针对一台33 kW水平轴风电机组开展了外场实验,得到其叶片7个断面翼型的压力分布曲线;基于求解时均N-S方程对风轮进行三维数值模拟,以及将叶片各断面作为二维翼型进行数值计算,分别得到各断面翼型的压力分布曲线及升阻力系数.通过将外场实验、三维和二维数值计算所得压力分布曲线及升阻力系数进行对比分析,研究了三维效应对风力机气动性能的影响.研究表明,从叶尖到叶根各断面翼型的压差先增大后逐渐减小,叶片表面压力分布曲线比较明显地反映了从叶尖到叶根流动分离的变化;叶片表面压力分布的三维数值计算结果较二维计算结果更加接近于外场实验值;风力机叶片表面的三维流动对叶片的气动性能影响较大,在叶尖和叶根部分尤为突出.  相似文献   

8.
本文从正交异性板Kármán型大挠度方程出发,以挠度为摄动参数,采用直接摄动法,研究了正交异性矩形板在面内压缩作用下的后屈曲性态.本文讨论了两种面内边界条件,同时考虑了初始挠度的影响.本文给出了多种复合材料板的计算结果.所得结果与实验结果的比较表明二者是一致的.  相似文献   

9.
抛物化稳定性方程在可压缩边界层中应用的检验   总被引:3,自引:0,他引:3  
用抛物化稳定性方程(PSE),研究了可压缩边界层中扰动的演化,并与由直接数值模拟(DNS)所得进行比较.目的在检验PSE方法用于研究可压缩边界层中扰动演化的可靠性.结果显示,无论是亚音速还是超音速边界层,由PSE方法和由DNS方法所得结果都基本一致,而温度比速度吻合得更好.对超音速边界层,还计算了小扰动的中性曲线.与线性稳定性理论(LST)的结果相比,二者的关系和不可压边界层的情况相似.  相似文献   

10.
计算旋转体体积的一般积分公式   总被引:1,自引:0,他引:1  
0引言本文首先讨论了平面曲线在直线上的投影长函数 ,平面曲线 (图形 )绕一共面直线旋转所得旋转体的体积函数 ,给出了它们的积分表示式 ,进而得出计算旋转体体积的一般积分公式。关于旋转体体积的计算问题 ,一般标准分析教材 [1,2 ] 中只讨论了平面图形绕坐标轴旋转所得旋转体的体积的积分公式 ,为了应用上的便利本文将其推广 ,给出平面图形绕任一共面直线旋转所得旋转体体积计算的一般积分公式。一般认为平面曲线是 (开 )直线段到平面内的一一的 ,双方连续的 ,在上映射的象[3] .在直线段a≤ t≤ b上引入坐标 t,在平面上引入笛卡尔直角坐标…  相似文献   

11.
This attempt theoratically examines the mass transfer analysis of the boundary layer flow caused by a stretching surface. Analytic solutions are derived with the Homptopy analysis method (HAM). Numerical values of skin friction coefficients and the surface mass transfer are reported. The effectiveness of this method is explicitly illustrated by discussing the convergence of the obtained series solutions. Velocity and gradient of mass transfer are shown graphically and discussed. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 915–936, 2011  相似文献   

12.
In this paper, an analytical solution in a closed form for the boundary layer flow over a shrinking sheet is presented when arbitrary velocity distributions are applied on the shrinking sheet. The solutions with seven typical velocity profiles are derived based on a general closed form expression. Such flow is usually not self-similar and the solution can only be implemented when the mass transfer at the wall is prescribed and determined by the moving velocity of the wall. The characteristics of the flows with the typical velocity distributions are discussed and compared with previous similarity solutions. The flow is observed to have quite different behavior from that of the self-similar flow reported in the literature and the results demonstrate distinctive momentum and energy transport characteristics. Some plots of the stream functions are also illustrated to show the difference in flow field between the shrinking sheet and the stretching sheet. An integral approach to solve boundary layer flow over a shrinking or stretching sheet with uncoupled arbitrary surface velocity and wall mass transfer velocity is outlined and the effectiveness of this approach is discussed.  相似文献   

13.
An analysis has been carried out to describe mixed convection heat transfer in the boundary layers on an exponentially stretching continuous surface with an exponential temperature distribution in the presence of magnetic field, viscous dissipation and internal heat generation/absorption. Approximate analytical similarity solutions of the highly non-linear momentum and energy equations are obtained. The present results are found to be in excellent agreement with previously published work on various special cases of the problem. Numerical results for temperature distribution and the local Nusselt number have been obtained for different values of the governing parameters. The numerical solutions are obtained by considering an exponential dependent stretching velocity and prescribed boundary temperature on the flow directional coordinate. The effects of various physical parameters like Prandtl number, Hartman number, Grashof number on dimensionless heat transfer characteristics are discussed in detail. In particular, it has been found that increase in Prandtl number decreases the skin-friction coefficient at the stretching surface, while increase in the strength of the magnetic field leads to increase in the local Nusselt number.  相似文献   

14.
A homotopy analysis method (HAM) is employed to investigate the unsteady magnetohydrodynamic (MHD) flow induced by a stretching surface. An incompressible viscous fluid fills the porous space. The heat and mass transfer analyses are also studied. Series solutions have been constructed. Comparative study between the series and exact solutions is also given. The effects of embedded parameters in the considered problems are examined in detail.  相似文献   

15.
In this paper, we investigate the flow, heat and mass transfer of a viscous fluid flow over a stretching sheet by including the blowing effects of mass transfer under high flux conditions. Mass transfer in this work means species transfer and is different from mass transpiration for permeable walls. The new contribution from this work is, for the first time, to consider the coupled blowing effects from massive species transfer on flow, heat, and species transfer for a stretching plate. Based on the exact solutions of the momentum equations, which are valid for the whole Navier–Stokes equations, the energy and mass transfer equations are solved exactly and the effects of the blowing parameter, the Schmidt number, and the Prandtl number on the flow, heat and mass transfer are presented and discussed. The solution is given in terms of an incomplete Gamma function. It is found the coupled blowing effects due to mass transfer can have significant influences on velocity profiles, drag, heat flux, as well as temperature and concentration profiles. These solutions provide rare results with closed form analytical expressions and can be used as benchmark problem for numerical code validation.  相似文献   

16.
An analysis is made to study the steady two-dimensional boundary layer flow and reactive mass transfer past an exponentially stretching sheet in an exponentially moving free stream. The reaction rate of solute and the wall concentration distribution are taken variable. The governing equations are transformed and then solved numerically. The study reveals that the momentum boundary layer thickness is considerably smaller than that of stagnation point flow over stretching sheet. Due to increase of Schmidt number and reaction rate parameter the mass transfer considerably enhances. Importantly, for solute distribution, in addition to mass transfer, mass absorption occurs in certain situations.  相似文献   

17.
This study models the magnetohydrodynamic (MHD) three-dimensional boundary layer flow of viscoelastic fluid. The flow is due to the exponentially stretching surface. The heat transfer analysis is performed through prescribed surface temperature (PST) and prescribed surface heat flux (PHF). The thermal conductivity is taken temperature dependent. Series solutions of velocities and temperatures are constructed. Graphical results for PST and PHF cases are plotted and analyzed. Numerical values of skin-friction coefficients and Nusselt numbers are presented and discussed.  相似文献   

18.
In this paper, we investigate the heat transfer of a viscous fluid flow over a stretching/shrinking sheet with a convective boundary condition. Based on the exact solutions of the momentum equations, which are valid for the whole Navier–Stokes equations, the energy equation ignoring viscous dissipation is solved exactly and the effects of the mass transfer parameter, the Prandtl number, and the wall stretching/shrinking parameter on the temperature profiles and wall heat flux are presented and discussed. The solution is given as an incomplete Gamma function. It is found the convective boundary conditions results in temperature slip at the wall and this temperature slip is greatly affected by the mass transfer parameter, the Prandtl number, and the wall stretching/shrinking parameters. The temperature profiles in the fluid are also quite different from the prescribed wall temperature cases.  相似文献   

19.
A similarity equation of the momentum boundary layer is analytically studied for a moving flat plate with mass transfer in a stationary fluid by a newly developed technique namely homotopy analysis method (HAM). The equation shows its significance for the practical problem of a shrinking sheet with a constant velocity, and only admits the existence of the solution with mass suction at the wall surface. The present work provides analytically new solution branch of the Blasius equation with a shrinking sheet in different solution areas, including both multiple solutions and unique solution with the aid of an introduced auxiliary function. The analytical results show that quite complicated behavior with three different solution areas controlled by two critical mass transfer parameters exists, which agrees well with the numerical techniques and greatly differs from the continuously stretching surface problem and the Blasius problem with a free stream. The new analytical solution branch of the Blasius equation with a shrinking sheet enriches the solution family of the Blasius equation, and helps to deeply understand the Blasius equation.  相似文献   

20.
In this paper, a new family of unsteady boundary layers over a stretching flat surface was proposed and studied. This new class of unsteady boundary layers involves the flows over a constant speed stretching surface from a slot, and the slot is moving at a certain speed. Depending on the slot moving parameter, the flow can be treated as a stretching sheet problem or a shrinking sheet problem. Both the momentum and thermal boundary layers were studied. Under special conditions, the solutions reduce to the unsteady Rayleigh problem and the steady Sakiadis stretching sheet problem. Solutions only exist for a certain range of the slot moving parameter, α. Two solutions are found for −53.55° < α < −45°. There are also two solution branches for the thermal boundary layers at any given Prandtl number in this range. Compared with the upper solution branch, the lower solution branch leads to simultaneous reduction in wall drag and heat transfer rate. The results also show that the motion of the slot greatly affects the wall drag and heat transfer characteristics near the wall and the temperature and velocity distributions in the fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号