首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper,we consider the solution of the biharmonic equation using Adini nonconforming finite element,and report new results of the asympiotic error expansions of the interpolation error functionals and nonconforming remainder.These expansions are used to develop two extrapolation formulas and a series of sharp error estimates.Finally,the numerical results have verified the extrapolation theory.  相似文献   

2.
Recently, some new multilevel preconditioners for solving elliptic finite element discretizations by iterative methods have been proposed. They are based on appropriate splittings of the finite element spaces under consideration, and may be analyzed within the framework of additive Schwarz schemes. In this paper we discuss some multilevel methods for discretizations of the fourth-order biharmonic problem by rectangular elements and derive optimal estimates for the condition numbers of the preconditioned linear systems. For the Bogner–Fox–Schmit rectangle, the generalization of the Bramble–Pasciak–Xu method is discussed. As a byproduct, an optimal multilevel preconditioner for nonconforming discretizations by Adini elements is also derived.  相似文献   

3.
The a posteriori error analysis of conforming finite element discretisations of the biharmonic problem for plates is well established, but nonconforming discretisations are more easy to implement in practice. The a posteriori error analysis for the Morley plate element appears very particular because two edge contributions from an integration by parts vanish simultaneously. This crucial property is lacking for popular rectangular nonconforming finite element schemes like the nonconforming rectangular Morley finite element, the incomplete biquadratic finite element, and the Adini finite element. This paper introduces a novel methodology and utilises some conforming discrete space on macro elements to prove reliability and efficiency of an explicit residual-based a posteriori error estimator. An application to the Morley triangular finite element shows the surprising result that all averaging techniques yield reliable error bounds. Numerical experiments confirm the reliability and efficiency for the established a posteriori error control on uniform and graded tensor-product meshes.  相似文献   

4.
讨论了重调和方程三维Adini元的特征值的渐进展开,通过展开式指出其特征值是下界逼近,并指出收敛阶为O(h~2),并用数值实验验证我们的理论分析.  相似文献   

5.
In this paper,we study the semi-discrete mortar upwind finite volume element method with the Crouzeix-Raviart element for the parabolic convection diffusion problems. It is proved that the semi-discrete mortar upwind finite volume element approximations derived are convergent in the H~1-and L~2-norms.  相似文献   

6.
In this paper, we establish a new local and parallel finite element discrete scheme based on the shifted‐inverse power method for solving the biharmonic eigenvalue problem of plate vibration. We prove the local error estimation of finite element solution for the biharmonic equation/eigenvalue problem and prove the error estimation of approximate solution obtained by the local and parallel scheme. When the diameters of three grids satisfy H4 = ?(w2) = ?(h), the approximate solutions obtained by our schemes can achieve the asymptotically optimal accuracy. The numerical experiments show that the computational schemes proposed in this paper are effective to solve the biharmonic eigenvalue problem of plate vibration.  相似文献   

7.
We propose a stabilized finite element method for the approximation of the biharmonic equation with a clamped boundary condition. The mixed formulation of the biharmonic equation is obtained by introducing the gradient of the solution and a Lagrange multiplier as new unknowns. Working with a pair of bases forming a biorthogonal system, we can easily eliminate the gradient of the solution and the Lagrange multiplier from the saddle point system leading to a positive definite formulation. Using a superconvergence property of a gradient recovery operator, we prove an optimal a priori estimate for the finite element discretization for a class of meshes.  相似文献   

8.
Nitsche’s mortar method for matching grids in the Hermann-Miyoshi mixed scheme for the biharmonic equation is considered. A two-parameter mortar problem is constructed and analyzed. Existence and uniqueness theorems are proved under certain constraints on the parameters. The norm of the difference between the solutions to the mortar and original problems is estimated. The convergence rates are the same as in the Hermann-Miyoshi scheme on matching grids.  相似文献   

9.
We prove that the finite element method for one-dimensional problems yields no discretization error at nodal points provided the shape functions are appropriately chosen. Then we consider a biharmonic problem with mixed boundary conditions and the weak solution u. We show that the Galerkin approximation of u based on the so-called biharmonic finite elements is independent of the values of u in the interior of any subelement.  相似文献   

10.
Summary In this paper we justify a finite element method for biharmonic boundary value problems. The method is based on a stationary variational principle (the Reissner principle), and was introduced by Hellan, Herrmann and Visser. We prove error estimates and the existence of a finite element solution.  相似文献   

11.
In this paper, we study the finite element methods for distributed optimal control problems governed by the biharmonic operator. Motivated from reducing the regularity of solution space, we use the decoupled mixed element method which was used to approximate the solution of biharmonic equation to solve the fourth order optimal control problems. Two finite element schemes, i.e., Lagrange conforming element combined with full control discretization and the nonconforming Crouzeix-Raviart element combined with variational control discretization, are used to discretize the decoupled optimal control system. The corresponding a priori error estimates are derived under appropriate norms which are then verified by extensive numerical experiments.  相似文献   

12.
The mortar finite element method is a special domain decomposition method, which can handle the situation where meshes on different subdomains need not align across the interface. In this article, we will apply the mortar element method to general variational inequalities of free boundary type, such as free seepage flow, which may show different behaviors in different regions. We prove that if the solution of the original variational inequality belongs to H2(D), then the mortar element solution can achieve the same order error estimate as the conforming P1 finite element solution. Application of the mortar element method to a free surface seepage problem and an obstacle problem verifies not only its convergence property but also its great computational efficiency. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

13.
An Adini‐Q1P3 finite element method is introduced to solve general elastic multi‐structure problems, where displacements on bodies, longitudinal displacements on plates, longitudinal displacements and rotational angles on rods are discretized by conforming linear (bilinear or trilinear) elements, and transverse displacements on plates and rods are discretized by Adini elements and Hermite elements of third order, respectively. The unique solvability and optimal error estimates in the energy norm are established for the discrete method, whose numerical performance is illustrated by some numerical examples. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1092–1112, 2011  相似文献   

14.
In this paper, we discuss a posteriori error estimates of the eigenvalue $\lambda_h$ given by Adini nonconforming finite element. We give an asymptotically exact error estimator of the $\lambda_h$. We prove that the order of convergence of the $\lambda_h$ is just 2 and the $\lambda_h$ converge from below for sufficiently small $h$.  相似文献   

15.
This paper proposes a mortar finite element method for solvingthe two-dimensional second-order elliptic problem with jumpsin coefficients across the interface between two subregions.Non-matching finite element grids are allowed on the interface,so independent triangulations can be used in different subregions.Explicitly realizable mortar conditions are introduced to couplethe individual discretizations. The same optimal L2-norm andenergy-norm error estimates as for regular problems are achievedwhen the interface is of arbitrary shape but smooth, thoughthe regularity of the true solution is low in the whole physicaldomain.  相似文献   

16.
Cascadic multigrid technique for mortar Wilson finite element method of homogeneous boundary value planar linear elasticity is described and analyzed. First the mortar Wilson finite element method for planar linear elasticity will be analyzed, and the error estimate under L2 and H1 norm is optimal. Then a cascadic multigrid method for the mortar finite element discrete problem is described. Suitable grid transfer operator and smoother are developed which lead to an optimal cascadic multigrid method. Finally, the computational results are presented.  相似文献   

17.
A new procedure for accelerating the convergence of mixed finite element approximations of the eigenpairs and of the biharmonic operator is proposed. It is based on a postprocessing technique that involves an additional solution of a source problem on an augmented finite element space. This space could be obtained either by substantially refining the grid, the two-grid method, or by using the same grid but increasing the order of polynomials by one, the two-space method. The numerical results presented and discussed in the paper illustrate the efficiency of the postprocessing method.  相似文献   

18.
解重调和问题混合有限元方程的直接方法   总被引:1,自引:1,他引:0  
王烈衡 《计算数学》1986,8(4):417-427
§1.引言 考虑如下重调和方程的齐次边值问题: △~2w=f,在Ω中, w=?w/?v=0,在Ω上.(1.1)其中Ω是平面凸多边形区域,?Ω是Ω的边界,?/?v表示?Ω上的外法向导数.  相似文献   

19.
边界元法(BEM)和多重互易法(MRM)相结合求解一类重调和方程.通过重调和基本解序列给出的MRM-方法和BEM, 推导出该类问题的MRM-边界变分方程, 用边界元法求解该变分方程, 从而得到重调和方程的近似解, 并给出了解的存在唯一性证明.通过数值算例说明了MRM-方法具有收敛速度快、计算精度高, 易编程等优点, 为使用边界元法数值求解重调和方程提供了方法和理论依据.适合于工程中的实际运算.  相似文献   

20.
Many rectangular plate elements developed in the history of finite element method (FEM) have displayed excellent numerical properties, yet their applications have been limited due to inability to conform to the arbitrary geometry of plates and shells. Numerical manifold method (NMM), considered to be a generalization of FEM, can easily solve this issue by viewing a mesh made up of rectangular elements as mathematical cover. In this study, ACM element (Adini and Clough element from A. Adini, R.W. Clough, Analysis of plate bending by the finite element method, University of California, 1960), a typical rectangular plate element is first integrated in the framework of NMM. Then, vibration analysis of arbitrary shaped thin plates is conducted employing the tailored NMM. Using the definition of integral of scalar functions on manifolds, we developed a mathematically rigorous mass lumping scheme for creating a symmetric and positive definite lumped mass matrix that is easy to inverse. A series of numerical experiments have been studied and analyzed, including free and forced vibration of thin plates with various shapes, validating the proposed mass lumping scheme can supersede the consistent mass formulation in those cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号