首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 518 毫秒
1.
In the two-phase flow field, a traditional mathematical model for simulating the transition of severe slugging flow presents a challenge when liquid slugs completely block pipelines. Accordingly, an advanced and practical slug model that is derived from a mixture model associated with a slip closure is essential to solving the problem in cooperation with the two-fluid model. The model can offset numerical instability that arises from the discontinuous function of the friction factor across the transition from one flow pattern to the other. Two numerical schemes, the non-iterative and the iterative, are developed, and the proposed schemes can stably predict the transient problems under the Courant–Friedrichs–Lewy (CFL) condition for semi-implicit/implicit schemes. In the present work, pressure transients produced by a complex phenomenon, named water hammer effect, are captured using the single-phase flow model in one-dimension to verify the applicability of the numerical schemes and the friction factor model. At last, the analysis of the two-phase transient flow in a pipeline-riser system indicates that the significant advantage of the present schemes is the robustness that the numerical prediction of the severe slugging behaviour is accurate and stable.  相似文献   

2.
In the present work, an extension of the Fourier Pseudospectral Method coupled with the Immersed Boudary Method for non-periodic problems (IMERSPEC) applied to numerical simulation of two-phase flow was developed. The proposed method was originally developed for single-phase, incompressible flow. Here, the method is extended to two-phase flows using the front-tracking method (IMERSPEC-FT) to model fluid-fluid interfaces. The proposed method was verified and validated through results involving spurious currents, mass conservation and numerical experiments analysis for rising bubbles. IMERSPEC-FT is shown to be a promising scheme for the two-phase computational fluid dynamics (CFD).  相似文献   

3.
A new approach to model two-dimensional linear crack propagation, based on the Galerkin Finite Volume Method (GFVM), is proposed. The displacement field is calculated using the GFVM method by solving two-dimensional equilibrium equations on an unstructured triangular mesh. An essential feature of this method is that it does not require matrix operations; hence, it obviously reduces computation time. The Two-Point Displacement Extrapolation (TPDE) technique is employed to calculate Stress Intensity Factors (SIFs). The accuracy of the structural solver that has been developed is evaluated using five test cases. In the first example, a Timoshenko cantilever beam, carrying an end point load, is analyzed. In the second and third examples, stress intensity factors are computed for edge and inner crack development in plates under transient loading. The GFVM results are then compared with their counterparts that resulted from the Explicit Finite Element Method (E-FEM). The comparison indicates that the FVM has an accuracy close to E-FEM, whereas the FVM drastically reduces the computational time. A case study is conducted to simulate the gradual propagation of crack. The results computed by the numerical simulation presented are in excellent agreement with the corresponding results from the analytical solution as well as experimental measurements.  相似文献   

4.
5.
An efficient simulation approach for turbulent flame brush propagation is a level set formulation closed by the turbulent flame speed. A formulation of the level set equation with the corresponding treatment of the turbulent mass burning rate that is compatible with standard Finite Volume discretization schemes available in computational fluid dynamics codes is employed. In order to simplify and to speed up the meshing process in complicated geometries (here in gas engines) the immersed boundary method in a continuous formulation, where the forces replacing the boundaries are introduced in the momentum conservation equations before discretization, is employed. In our contribution, aspects of the numerical implementation of the level set flame model combined with the immersed boundary formulation in OpenFOAM are presented. First representative simulation results of a homogeneous methane/air mixture combustion in a simplified engine geometry are shown. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
In this article, we present the numerical simulations of a real cylinder head quench cooling process employing a newly developed boiling phase change model using the commercial CFD code AVL-FIRE v8.5. Separate computational domains constructed for the solid and liquid regions are numerically coupled at the interface of the solid–liquid boundaries using the AVL-Code-Coupling-Interface (ACCI) feature. The boiling phase change process triggered by the dipping hot metal and the ensuing two-phase flow is handled using an Eulerian two-fluid method. Multitude of flow features such as vapor pocket generation, bubble clustering and their disposition, are captured very effectively during the computation, in addition to the variation of the temperature pattern within the solid region. A comparison of the registered temperature readings at different monitoring locations with the numerical results generates an overall very good agreement and indicates the presence of intense non-uniformity in the temperature distribution within the solid. Overall, the predictive capability of the new boiling model is well demonstrated for real-time quenching applications.  相似文献   

7.
从运动方程和本构方程出发,推导得到了含柱状粒子两相流场的修正Orr-Sommerfeld方程,然后在边界层流场中,采用数值计算方法,得到了含柱状粒子流场的稳定性中性曲线,给出了流场失稳的临界雷诺数.结果表明在所述情况下,柱状粒子对流场起着抑制失稳的作用,而且抑制的程度随着柱状粒子体积分数和长径比的增加而提高.  相似文献   

8.
The k-ε-Sp model, describing two-dimensional gas–solid two-phase turbulent flow, has been developed. In this model, the diffusion flux and slip velocity of solid particles are introduced to represent the particle motion in two-phase flow. Based on this model, the gas–solid two-phase turbulent flow behind a vertical backward-facing step is simulated numerically and the turbulent transport velocities of solid particles with high density behind the step are predicted. The numerical simulation is validated by comparing the results of the numerical calculation with two other two-phase turbulent flow models (k-ε-Ap, k-ε-kp) by Laslandes and the experimental measurements. This model, not only has the same virtues of predicting the longitudinal transport of the solid particles as the present practical two-phase flow models, but also can predict the lateral transport of the solid particles correctly.  相似文献   

9.
10.
The two-phase flow models are commonly used in industrial applications, such as nuclear, power, chemical-process, oil-and-gas, cryogenics, bio-medical, micro-technology and so on. This is a survey paper on the study of compressible nonconservative two-fluid model, drift-flux model and viscous liquid-gas two-phase flow model. We give the research developments of these three two-phase flow models, respectively. In the last part, we give some open problems about the above models.  相似文献   

11.
Computational fluid dynamics (CFD) computer codes have become an integral part of the analysis and scientific investigation of complex, engineering flow systems. Unfortunately, inherent in the solutions from simulations performed with these computer codes is error or uncertainty in the results. The issue of numerical uncertainty addresses the development of methods to define the magnitude of error or to bound the error in a given simulation. This paper reviews the status of methods for evaluation of numerical uncertainty, and provides a direction for the effective use of some techniques in estimating uncertainty in a simulation.  相似文献   

12.
The purpose of this work is to simulate the microstructure development of aluminum alloys during hot metal forming processes such as extrusion with the help of the Finite Element Method (FEM). To model the thermomechanical coupled behavior of the material during the extrusion process an appropriate material model is required. In the current work a Johnson–Cook like thermoelastic viscoplastic material model is used. To overcome the numerical difficulties during simulation of extrusion such as contact problem and element distortion an adaptive meshing system is developed and applied. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
A spatial distribution multimedia fate model is proposed for the rigorous simulation of the environmental multimedia fate of hazardous chemicals emitted from a variety of sources. To solve the relevant equation, we introduce an explicit finite difference method applied to uniform grids. We assessed the numerical properties of the model, including stability and accuracy. A new dimensionless number (multimedia transport number) is proposed for determining the numerical stability of the unsteady-state method. The model was verified by comparison with analytical solutions for the transport of non-conservative substances in two-phase open-channel flow. The spatial resolution of the spatial distribution model was tested via a comparison with a general multimedia fate model in a practical application related to toluene emissions in Seoul, South Korea.  相似文献   

14.
The article is devoted to the study of convergence properties of a Finite Volume Method (FVM) using Voronoi boxes for discretization. The approach is based on the construction of a new nonconforming Finite Element Method (FEM), such that the system of linear equations coincides completely with that for the FVM. Thus, by proving convergence properties of the FEM, we obtain similar ones of the FVM. In this article, the investigations are restricted to the Poisson equation. © 1998 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 14:213–231, 1998  相似文献   

15.
Stefan Bischoff  Lothar Gaul 《PAMM》2012,12(1):551-552
Ultrasonic waves travel in rope structures over long distances as guided waves, allowing for effective health monitoring. In order to localize and characterize defects, an exact knowledge of the propagation, reflection, and transmission properties of the ultrasonic waves is required. These properties can be obtained using the Finite Element Method by modeling a segment of the periodic waveguide with a periodicity condition. The solution of the corresponding eigenvalue problem leads to all propagating modes of the waveguide as well as locally generated evanescent modes. The Boundary Element Method (BEM) is used in combination with the Finite Element Method for characterizing the wave propagation. The mode conversion at discontinuities, such as cracks or notches, can be subsequently described by reflection and transmission coefficients. The simulation results are the corresponding coefficients as a function of frequency and enable the selection of adequate modes for an effective defect detection. Additionally, it is demonstrated that along with the localization of cracks, conclusions about the crack geometry can be made with the help of reflection and transmission coefficients. The reliability and numerical accuracy of the simulation results are verfied by comparison with experimental findings. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
This paper presents a study in the inter-comparison and validation of three-dimensional computational fluid dynamics codes which are currently used in river engineering. Finite volume codes PHOENICS, FLUENT and SSIIM; and finite element code TELEMAC3D are considered in this study. The work has been carried out by competent hydraulic modellers who are users of the codes and not involved in their development. This paper is therefore written from the perspective of independent practitioners of the techniques. In all codes, the flow calculations are performed by solving the three-dimensional continuity and Reynolds-averaged Navier–Stokes equations with the kε turbulence model. The application of each code was carried out independently and this led to slightly different, but nonetheless valid, models. This is particularly seen in the different boundary conditions which have been applied and which arise in part from differences in the modelling approaches and methodology adopted by the different research groups and in part from the different assumptions and formulations implemented in the different codes. Similar finite volume meshes are used in the simulations with PHOENICS, FLUENT and SSIIM while in TELEMAC3D, a triangular finite element mesh is used. The ASME Journal of Fluids Engineering editorial policy is taken as a minimum framework for the control of numerical accuracy. In all cases, grid convergence is demonstrated and conventional criteria, such as Y+, are satisfied. A rigorous inter-comparison of the codes is performed using large-scale experimental data from the UK Flood Channel Facility for a two-stage meandering channel. This example data set shows complex hydraulic behaviour without the additional complications found in natural rivers. Standardised methods are used to compare each model with the available experimental data. Results are shown for the streamwise and transverse velocities, secondary flow, turbulent kinetic energy, bed shear stress and free surface elevation. They demonstrate that the models produce similar results overall, although there are some differences in the predicted flow field and greater differences in turbulent kinetic energy and bed shear stress. This study is seen as an essential first step in the inter-comparison of some of the computational fluid dynamics codes used in the field of river engineering.  相似文献   

17.
In this paper, we explore new techniques for numerical simulation of liquid redistribution in permeable media involving hysteresis. We regard the hysteresis as a kind of passive fractional resistance, and integrate it into Partial Differential Equations (PDE). Also numerical methods such as the Finite Volume Method (FVM) are developed. A system of partial differential equations is derived for liquid pressure, including the effects of hysteresis and mixed media. The finite difference schemes based on the conservative law are also provided, which are well suited to the mixed media made up of different material layers. A new algorithm is deliberately designed to evaluate the total liquid volume that satisfies the conservative law exactly.

Furthermore, numerical examples are conducted to imitate the following fascinating phenomena in real physics.

1. (a) The nonuniform equilibrium saturation in redistribution.
2. (b) The noncontinuity of saturation at the interface of mixed media.
3. (c) Conservation of the total liquid volume even when t is large.

The new numerical techniques in this paper are not only easy to carry out with a modest computational effect, but also effective to simulate the real porous flow in the laboratory experiments.  相似文献   


18.
A finite element based computer model is developed to simulate turbulent shear flow. The results obtained from the model are compared with numerical finite difference based calculations and experimentally determined values associated with flow behind a prolate spheroid. The results obtained utilizing a velocity-pressure formulation are, in the region immediately downstream of the spheroid, markedly better than those obtained under the standard assumption of zero pressure gradient boundary layer flow.  相似文献   

19.
The present paper introduces a new interfacial marker-level set method (IMLS) which is coupled with the Reynolds averaged Navier–Stokes (RANS) equations to predict the turbulence-induced interfacial instability of two-phase flow with moving interface. The governing RANS equations for time-dependent, axisymmetric and incompressible two-phase flow are described in both phases and solved separately using the control volume approach on structured cell-centered collocated grids. The transition from one phase to another is performed through a consistent balance of kinematic and dynamic conditions on the interface separating the two phases. The topological changes of the interface are predicted by applying the level set approach. By fitting a number of interfacial markers on the intersection points of the computational grids with the interface, the interfacial stresses and consequently, the interfacial driving forces are easily estimated. Moreover, the normal interface velocity, calculated at the interfacial markers positions, can be extended to the higher dimensional level set function and used for the interface advection process. The performance of linear and non-linear two-equation kε turbulence models is investigated in the context of the considered two-phase flow impinging problem, where a turbulent gas jet impinging on a free liquid surface. The numerical results obtained are evaluated through the comparison with the available experimental and analytical data. The nonlinear turbulence model showed superiority in predicting the interface deformation resulting from turbulent normal stresses. However, both linear and nonlinear turbulence models showed a similar behavior in predicting the interface deformation due to turbulent tangential stresses. In general, the developed IMLS numerical method showed a remarkable capability in predicting the dynamics of the considered two-phase immiscible flow problems and therefore it can be applied to quite a number of interface stability problems.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号