首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 451 毫秒
1.
ABSTRACT

We investigate the asymptotic properties of the maximum likelihood estimator and Bayes estimator of the drift parameter for stochastic processes satisfying linear stochastic differential equations driven by a mixed fractional Brownian motion. We obtain a Bernstein–von Mises-type theorem also for such a class of processes.  相似文献   

2.

We deal with reflected backward stochastic differential equations with right continuous and left limited barrier. We show the existence and uniqueness of the solution and we give a comparison theorem. As an application, we study the link between such an equations with stochastic mixed control problems.  相似文献   

3.
Abstract

We investigate the asymptotic properties of instrumental variable estimators of the drift parameter for stochastic processes satisfying linear stochastic differential equations driven by fractional Brownian motion.  相似文献   

4.
Abstract

Stochastic delay differential equations with wideband noise perturbations is considered. First it is shown that the perturbed system converges weakly to a stochastic delay differential equation driven by a Brownian motion. Stability and asymptotic properties of stochastic delay differential equations with a small parameter are developed. It is shown that the properties such as stability, recurrence, etc., of the limit system with time lag is preserved for the solution x ?(·) of the underlying delay equation for ? > 0 small enough. Perturbed Liapunov function method is used in the analysis.  相似文献   

5.
ABSTRACT

We study optimal control of stochastic Volterra integral equations (SVIE) with jumps by using Hida-Malliavin calculus.
  • We give conditions under which there exist unique solutions of such equations.

  • Then we prove both a sufficient maximum principle (a verification theorem) and a necessary maximum principle via Hida-Malliavin calculus.

  • As an application we solve a problem of optimal consumption from a cash flow modelled by an SVIE.

  相似文献   

6.
ABSTRACT

Our purpose of this paper is to study stochastic control problems for systems driven by mean-field stochastic differential equations with elephant memory, in the sense that the system (like the elephants) never forgets its history. We study both the finite horizon case and the infinite time horizon case.
  • In the finite horizon case, results about existence and uniqueness of solutions of such a system are given. Moreover, we prove sufficient as well as necessary stochastic maximum principles for the optimal control of such systems. We apply our results to solve a mean-field linear quadratic control problem.

  • For infinite horizon, we derive sufficient and necessary maximum principles.

    As an illustration, we solve an optimal consumption problem from a cash flow modelled by an elephant memory mean-field system.

  相似文献   

7.
Abstract

In this article, we propose an all-in-one statement which includes existence, uniqueness, regularity, and numerical approximations of mild solutions for a class of stochastic partial differential equations (SPDEs) with non-globally monotone nonlinearities. The proof of this result exploits the properties of an existing fully explicit space-time discrete approximation scheme, in particular the fact that it satisfies suitable a priori estimates. We also obtain almost sure and strong convergence of the approximation scheme to the mild solutions of the considered SPDEs. We conclude by applying the main result of the article to the stochastic Burgers equations with additive space-time white noise.  相似文献   

8.
Abstract

In this work, we shall investigate solution (strong, weak and mild) processes and relevant properties of stochastic convolutions for a class of stochastic retarded differential equations in Hilbert spaces. We introduce a strongly continuous one-parameter family of bounded linear operators which will completely describe the corresponding deterministic systematical dynamics with time delays. This family, which constitutes the fundamental solutions (Green's operators) of our stochastic retarded systems, is applied subsequently to define mild solutions of the stochastic retarded differential equations considered. The relations among strong, weak and mild solutions are explored. By virtue of a strong solution approximation method, Burkholder–Davis–Gundy's type of inequalities for stochastic convolutions are established.  相似文献   

9.
Abstract

The article presents a novel variational calculus to analyze the stability and the propagation of chaos properties of nonlinear and interacting diffusions. This differential methodology combines gradient flow estimates with backward stochastic interpolations, Lyapunov linearization techniques as well as spectral theory. This framework applies to a large class of stochastic models including nonhomogeneous diffusions, as well as stochastic processes evolving on differentiable manifolds, such as constraint-type embedded manifolds on Euclidian spaces and manifolds equipped with some Riemannian metric. We derive uniform as well as almost sure exponential contraction inequalities at the level of the nonlinear diffusion flow, yielding what seems to be the first result of this type for this class of models. Uniform propagation of chaos properties w.r.t. the time parameter is also provided. Illustrations are provided in the context of a class of gradient flow diffusions arising in fluid mechanics and granular media literature. The extended versions of these nonlinear Langevin-type diffusions on Riemannian manifolds are also discussed.  相似文献   

10.
Abstract

In many cases, the existence and uniqueness of the solution of a differential equation are proved using fixed point theory. In this paper, we utilize the theory of operators and ingenious techniques to investigate the well-posedness of mild solution to semilinear fractional stochastic differential equations. We first discuss some properties of a class of Volterra integral operators and then establish a new generalized Gronwall integral inequality with a double singularity. Finally, we use the properties and integral inequality to study the well-posedness of mild solution to the semilinear fractional stochastic differential equations. One sees that it is concise and effectiveness using the previous results to investigate the well-posedness of the mild solution.  相似文献   

11.
Abstract

We consider stochastic optimal control problems in Banach spaces, related to nonlinear controlled equations with dissipative non linearities: on the nonlinear term we do not impose any growth condition. The problems are treated via the backward stochastic differential equations approach, that allows also to solve in mild sense Hamilton Jacobi Bellman equations in Banach spaces. We apply the results to controlled stochastic heat equation, in space dimension 1, with control and noise acting on a subdomain.  相似文献   

12.

We develop the theory of stochastic distributions with values in a separable Hilbert space, and apply this theory to the investigation of abstract stochastic evolution equations with additive noise.  相似文献   

13.

In this paper we prove the existence of a unique solution for a class of stochastic parabolic partial differential equations in bounded domains, with Dirichlet boundary conditions. The main tool is an equivalence result, provided by the stochastic characteristics method, between the stochastic equations under investigation and a class of deterministic parabolic equations with moving boundaries, depending on random coefficients. We show the existence of the solution to this last problem, thus providing a solution to the former.  相似文献   

14.

We consider optimal control problems for systems described by stochastic differential equations with delay (SDDE). We prove a version of Bellman's principle of optimality (the dynamic programming principle) for a general class of such problems. That the class in general means that both the dynamics and the cost depends on the past in a general way. As an application, we study systems where the value function depends on the past only through some weighted average. For such systems we obtain a Hamilton-Jacobi-Bellman partial differential equation that the value function must solve if it is smooth enough. The weak uniqueness of the SDDEs we consider is our main tool in proving the result. Notions of strong and weak uniqueness for SDDEs are introduced, and we prove that strong uniqueness implies weak uniqueness, just as for ordinary stochastic differential equations.  相似文献   

15.
Abstract

In this work, we consider the two-dimensional viscoelastic fluid flow equations, arising from the Oldroyd model for the non-Newtonian fluid flows. We investigate the well-posedness of such models in two-dimensional bounded and unbounded (Poincaré domains) domains, both in deterministic and stochastic settings. The existence and uniqueness of weak solution in the deterministic case is proved via a local monotonicity property of the linear and nonlinear operators and a localized version of the Minty-Browder technique. Some results on the exponential stability of stationary solutions are also established. The global solvability results for the stochastic counterpart are obtained by a stochastic generalization of the Minty-Browder technique. The exponential stability results in the mean square as well as in the pathwise (almost sure) sense are also discussed. Using the exponential stability results, we finally prove the existence of a unique invariant measure, which is ergodic and strongly mixing.  相似文献   

16.
ABSTRACT

We prove the existence and uniqueness of solutions to a kind of quasilinear stochastic integral-partial differential equations with obstacles. Our method is based on the probabilistic interpretation of the solutions so that penalization method can be applied to a sequence of backward doubly stochastic differential equations with jumps. Relations between regular potentials and regular measures play an important role.  相似文献   

17.
《随机分析与应用》2013,31(2):251-274
Abstract

The purpose of this paper is to investigate pathwise stability for certain Hilbert space-valued stochastic evolution equations. We are especially interested in the robustness analysis of perturbed stochastic differential equations in infinite dimensions. Sufficient conditions are established to ensure the almost surely stable decay of the given stochastic systems. Lastly, a corollary and corresponding example are studied to illustrate our theory.  相似文献   

18.
《随机分析与应用》2013,31(4):1027-1066
Abstract

Set-indexed stochastic analysis and set-indexed stochastic calculus are faced here with a new approach of dimension's reduction. We introduce a new tool (main flow) in order to deal with one-parameter calculus in set-indexed framework. We prove an Itô formula for any Brownian functional where the Brownian component is not a martingale on the whole set of indices but induces such a martingale. As first extensions, we provide definitions of bracket and local time in set-indexed context.  相似文献   

19.

We prove a Stroock-Varadhan type quasi-sure limit theorem for stochastic differential equations in the plane.  相似文献   

20.
Abstract

In this paper we study stochastic evolution equations driven by a fractional white noise with arbitrary Hurst parameter in infinite dimension. We establish the existence and uniqueness of a mild solution for a nonlinear equation with multiplicative noise under Lipschitz condition by using a fixed point argument in an appropriate inductive limit space. In the linear case with additive noise, a strong solution is obtained. Those results are applied to stochastic parabolic partial differential equations perturbed by a fractional white noise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号