首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, some regularity properties of mild solutions for a class of stochastic linear functional differential equations driven by infinite-dimensional Wiener processes are considered. In terms of retarded fundamental solutions, we introduce a class of stochastic convolutions which naturally arise in the solutions and investigate their Yosida approximants. By means of the retarded fundamental solutions, we find conditions under which each mild solution permits a continuous modification. With the aid of Yosida approximation, we study two kinds of regularity properties, temporal and spatial ones, for the retarded solution processes. By employing a factorization method, we establish a retarded version of the Burkholder–Davis–Gundy inequality for stochastic convolutions.  相似文献   

2.
We prove that the δ-dimensional Bessel process (δ > 1) is a strong solution of a stochastic differential equation of the special form. The purpose of this paper is to investigate whether there exist other (weak and strong) solutions of these equations. This leads us to the conclusion that Zvonkin's theorem cannot be extended to stochastic differential equations with an unbounded drift.  相似文献   

3.
Abstract

In many cases, the existence and uniqueness of the solution of a differential equation are proved using fixed point theory. In this paper, we utilize the theory of operators and ingenious techniques to investigate the well-posedness of mild solution to semilinear fractional stochastic differential equations. We first discuss some properties of a class of Volterra integral operators and then establish a new generalized Gronwall integral inequality with a double singularity. Finally, we use the properties and integral inequality to study the well-posedness of mild solution to the semilinear fractional stochastic differential equations. One sees that it is concise and effectiveness using the previous results to investigate the well-posedness of the mild solution.  相似文献   

4.

We consider optimal control problems for systems described by stochastic differential equations with delay (SDDE). We prove a version of Bellman's principle of optimality (the dynamic programming principle) for a general class of such problems. That the class in general means that both the dynamics and the cost depends on the past in a general way. As an application, we study systems where the value function depends on the past only through some weighted average. For such systems we obtain a Hamilton-Jacobi-Bellman partial differential equation that the value function must solve if it is smooth enough. The weak uniqueness of the SDDEs we consider is our main tool in proving the result. Notions of strong and weak uniqueness for SDDEs are introduced, and we prove that strong uniqueness implies weak uniqueness, just as for ordinary stochastic differential equations.  相似文献   

5.
Abstract

In this article, we propose an all-in-one statement which includes existence, uniqueness, regularity, and numerical approximations of mild solutions for a class of stochastic partial differential equations (SPDEs) with non-globally monotone nonlinearities. The proof of this result exploits the properties of an existing fully explicit space-time discrete approximation scheme, in particular the fact that it satisfies suitable a priori estimates. We also obtain almost sure and strong convergence of the approximation scheme to the mild solutions of the considered SPDEs. We conclude by applying the main result of the article to the stochastic Burgers equations with additive space-time white noise.  相似文献   

6.
In this work, we shall consider stationary (mild) solutions for a class of retarded functional linear differential equations with additive noise in Hilbert spaces. We first introduce a family of Green operators for the stochastic systems and establish stability results which will play an important role in the investigation of stationary solutions. A criterion imposed on the Green operators is presented to identify a unique stationary solution for the systems considered. Under strong quasi-Feller property, it is shown that this criterion is a sufficient and necessary condition to guarantee a unique stationary solution, based on a method having its origins in optimal control theory.  相似文献   

7.
《随机分析与应用》2013,31(5):1341-1361
Abstract

In this paper we consider weak solutions to stochastic inclusions driven by a general semimartingale. We prove the existence of weak solutions and equivalence with the existence of solutions to the martingale problem formulated to such inclusion. Using this we then analyze compactness property of solutions set. Presenting results extend some of those being known for stochastic differential inclusions of Itô's type.  相似文献   

8.
ABSTRACT

The stochastic theta method is a family of implicit Euler methods for approximating solutions to Itô stochastic differential equations. It is proved that the weak error for the stochastic theta numerical method is of the correct form to apply Richardson extrapolation. Several computational examples illustrate the improvement in accuracy of the approximations when applying extrapolation.  相似文献   

9.
Abstract

In this article, we consider a stochastic integral inclusion driven by semimartingale with discontinuous multivalued right hand side. We discuss the existence of strong solutions using lower and upper solutions method and a fixed point theorem for ordered sets. The presented studies extend some recent results both for deterministic differential inclusions and stochastic differential equations for increasing operators.  相似文献   

10.
This article is devoted to the existence of strong solutions to stochastic differential equations (SDEs). Compared with Ito's theory, we relax the assumptions on the volatility term and replace the global Lipschitz continuity condition with a local Lipschitz continuity condition and a Hoelder continuity condition. In particular, our general SDE covers the Cox–Ingersoll–Ross SDE as a special case. We note that the general weak existence theory presumably extends to our general SDE (although the explicit time dependence of the drift term and the volatility term might require some extra considerations). However, avoiding weak existence theory we prove the existence of a strong solution directly using a priori estimates (the so-called energy estimates) derived from the SDE. The benefit of this approach is that the argument only requires some basic knowledge about stochastic and functional analysis. Moreover, the underlying principle has developed to become one of the cornerstones of the modern theory of partial differential equations (PDEs). In this sense, the general goal of this article is not just to establish the existence of a strong solution to the SDE under consideration but rather to introduce a new principle in the context of SDEs that has already proven to be successful in the context of PDEs.  相似文献   

11.
Nonlinear BSDEs were first introduced by Pardoux and Peng, 1990, Adapted solutions of backward stochastic differential equations, Systems and Control Letters, 14, 51–61, who proved the existence and uniqueness of a solution under suitable assumptions on the coefficient. Fully coupled forward–backward stochastic differential equations and their connection with PDE have been studied intensively by Pardoux and Tang, 1999, Forward–backward stochastic differential equations and quasilinear parabolic PDE's, Probability Theory and Related Fields, 114, 123–150; Antonelli and Hamadène, 2006, Existence of the solutions of backward–forward SDE's with continuous monotone coefficients, Statistics and Probability Letters, 76, 1559–1569; Hamadème, 1998, Backward–forward SDE's and stochastic differential games, Stochastic Processes and their Applications, 77, 1–15; Delarue, 2002, On the existence and uniqueness of solutions to FBSDEs in a non-degenerate case, Stochastic Processes and Their Applications, 99, 209–286, amongst others.

Unfortunately, most existence or uniqueness results on solutions of forward–backward stochastic differential equations need regularity assumptions. The coefficients are required to be at least continuous which is somehow too strong in some applications. To the best of our knowledge, our work is the first to prove existence of a solution of a forward–backward stochastic differential equation with discontinuous coefficients and degenerate diffusion coefficient where, moreover, the terminal condition is not necessary bounded.

The aim of this work is to find a solution of a certain class of forward–backward stochastic differential equations on an arbitrary finite time interval. To do so, we assume some appropriate monotonicity condition on the generator and drift coefficients of the equation.

The present paper is motivated by the attempt to remove the classical condition on continuity of coefficients, without any assumption as to the non-degeneracy of the diffusion coefficient in the forward equation.

The main idea behind this work is the approximating lemma for increasing coefficients and the comparison theorem. Our approach is inspired by recent work of Boufoussi and Ouknine, 2003, On a SDE driven by a fractional brownian motion and with monotone drift, Electronic Communications in Probability, 8, 122–134; combined with that of Antonelli and Hamadène, 2006, Existence of the solutions of backward–forward SDE's with continuous monotone coefficients, Statistics and Probability Letters, 76, 1559–1569. Pursuing this idea, we adopt a one-dimensional framework for the forward and backward equations and we assume a monotonicity property both for the drift and for the generator coefficient.

At the end of the paper we give some extensions of our result.  相似文献   

12.
Abstract

In this article, we discuss the successive approximations problem for the solutions of the semilinear stochastic differential equations in Hilbert spaces with cylindrical Wiener processes under some conditions which are weaker than the Lipschitz one. We establish the existence and the uniqueness of the solution and additionally, in our framework we consider a limiting problem for the mild solution. It is shown that the mild solution tends to the solution of the stochastic differential equation of Itô type in finite dimensional space.  相似文献   

13.
This article continues the study of Liu [Statist. Probab. Lett. 78(2008): 1775–1783; Stoch. Anal. Appl. 29(2011): 799–823] for stationary solutions of stochastic linear retarded functional differential equations with the emphasis on delays which appear in those terms including spatial partial derivatives. As a consequence, the associated stochastic equations have unbounded operators acting on the point or distributed delayed terms, while the operator acting on the instantaneous term generates a strongly continuous semigroup. We present conditions on the delay systems to obtain a unique stationary solution by combining spectrum analysis of unbounded operators and stochastic calculus. A few instructive cases are analyzed in detail to clarify the underlying complexity in the study of systems with unbounded delayed operators.  相似文献   

14.
It is known that a unique strong solution exists for multivalued stochastic differential equations under the Lipschitz continuity and linear growth conditions. In this paper we apply the Euler-Peano scheme to show that existence of weak solution and pathwise uniqueness still hold when the coefficients are random and satisfy one-sided locally Lipschitz continuous and an integral condition (i.e. Krylov's conditions put forward in On Kolmogorov's equations for finite-dimensional diffusions, Stochastic PDE's and Kolmogorov Equations in Infinite Dimensions (Cetraro, 1998), Lecture Notes in Math., 1715, Springer, Berlin, 1999, pp. 1–63). When the coefficients are nonrandom and possibly discontinuous but only satisfy some integral conditions, the sequence of solutions of the Euler-Peano scheme converges weakly, and the limit is a weak solution of the corresponding MSDE. As a particular case, we obtain a global semi-flow for stochastic differential equations reflected in closed, convex domains.  相似文献   

15.
In this paper, we initiate a study on stochastic neutral partial functional differential equations in a real separable Hilbert space. Our goal here is to study the existence and uniqueness of a mild solution of this class of equations and also the exponential stability of the moments of a mild solution as well as its sample paths. The results obtained here generalize the main results from [Taniguchi, Stochastics and Stochastics Reports, 53, (1995) 41–52], [Taniguchi, Stochastic Analysis and Applications, 16, (1998) 965–975] and [Liu and Truman, Statistics Probability Letters, 50, (2000) 273–278]. An example is given to illustrate the theory.  相似文献   

16.
《随机分析与应用》2013,31(2):403-427
Abstract

In this paper, we set up the comparison theorem between the mild solution of semilinear time-delay stochastic evolution equation with general time-delay variable and the solution of a class (1-dimension) deterministic functional differential equation, by using the Razumikhin–Lyapunov type functional and the theory of functional differential inequalities. By applying this comparison theorem, we give various types of the stability comparison criteria for the semilinear time-delay stochastic evolution equations. With the aid of these comparison criteria, one can reduce the stability analysis of semilinear time-delay stochastic evolution equations in Hilbert space to that of a class (1-dimension) deterministic functional differential equations. Furthermore, these comparison criteria in special case have been applied to derive sufficient conditions for various stability of the mild solution of semilinear time-delay stochastic evolution equations. Finally, the theories are illustrated with some examples.  相似文献   

17.
ABSTRACT

In this paper, we investigate the existence and Hyers-Ulam stability for random impulsive stochastic functional differential equations with finite delays. Firstly, we prove the existence of mild solutions to the equations by using Krasnoselskii's fixed point. Then, we investigate the Hyers-Ulam stability results under the Lipschitz condition on a bounded and closed interval. Finally, an example is given to illustrate our results.  相似文献   

18.
Abstract

In this paper we study stochastic evolution equations driven by a fractional white noise with arbitrary Hurst parameter in infinite dimension. We establish the existence and uniqueness of a mild solution for a nonlinear equation with multiplicative noise under Lipschitz condition by using a fixed point argument in an appropriate inductive limit space. In the linear case with additive noise, a strong solution is obtained. Those results are applied to stochastic parabolic partial differential equations perturbed by a fractional white noise.  相似文献   

19.
We prove a relative compactness criterion in Wiener–Sobolev space which represents a natural extension of the compact embedding of Sobolev space H1 into , at the level of random fields. Then we give a specific statement of this criterion for random fields solutions of semi-linear stochastic partial differential equations with coefficients bounded in an appropriate way. Finally, we employ this result to construct solutions for semi-linear stochastic partial differential equations with distribution as final condition. We also give a probabilistic interpretation of this solution in terms of backward doubly stochastic differential equations formulated in a weak sense.  相似文献   

20.
《随机分析与应用》2013,31(5):1189-1205
Abstract

In this paper, we establish the existence of solutions of a more general class of stochastic functional integral equations. The main tools here are the measure of noncompactness and the fixed point theorem of Darbo type. The results of this paper generalize the results of Rao–Tsokos [Rao, A.N.V.; Tsokos, C.P. A class of stochastic functional integral equations. Coll. Math. 1976, 35, 141–146.] and Szynal–Wedrychowicz [Szynal, D.; Wedrychowicz, S. On existence and an asymptotic behaviour of random solutions of a class of stochastic functional integral equations. Coll. Math. 1987, 51, 349–364.].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号