首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Population protocols have been introduced as a model of sensor networks consisting of very limited mobile agents with no control over their own movement. A population protocol corresponds to a collection of anonymous agents, modeled by finite automata, that interact with one another to carry out computations, by updating their states, using some rules.Their computational power has been investigated under several hypotheses but always when restricted to finite size populations. In particular, predicates stably computable in the original model have been characterized as those definable in Presburger arithmetic.We study mathematically the convergence of population protocols when the size of the population goes to infinity. We do so by giving general results, that we illustrate through the example of a particular population protocol for which we even obtain an asymptotic development.This example shows in particular that these protocols seem to have a rather different computational power when a huge population hypothesis is considered.  相似文献   

2.
We study numerically the evolution of a size-structured cell population model, with finite maximum individual size and minimum size for mitosis. We formulate two schemes for the numerical solution of such a model. The schemes are analysed and optimal rates of convergence are derived. Some numerical experiments are also reported to demonstrate the predicted accuracy of the schemes. We also consider the behaviour of the methods with respect to the different discontinuities that appear in the solution to the problem and the stable size distribution. In addition, the numerical schemes are used to study asynchronous exponential growth.  相似文献   

3.
We analyze a degenerate diffusion equation with singular boundary data, modeling the evolution of a polygenic trait under selection and drift. The equation models the contributions of a large but finite number of loci (genes) to the trait and at the same time allows the population trait mean to vary in a way that affects the strength of selection at individual loci; in this respect it differs from other population-genetic models that have been rigorously analyzed. We present existence, uniqueness and stability results for solutions of the system. We also prove that the genetic variance in the system tends to zero in the long time limit, and relate the dynamics of the trait mean to the variance.  相似文献   

4.
Quantized linear systems are a widely studied class of nonlinear dynamics resulting from the control of a linear system through finite inputs. The stabilization problem for these models shall be studied in terms of the so-called practical stability notion that essentially consists in confining the trajectories into sufficiently small neighborhoods of the equilibrium (ultimate boundedness).We study the problem of describing the smallest sets into which any feedback can ultimately confine the state, for a given linear single-input system with an assigned finite set of admissible input values (quantization). We show that the family of hypercubes in canonical controller form contains a controlled invariant set of minimal size. A comparison is presented which quantifies the improvement in tightness of the analysis technique based on hypercubes with respect to classical results using quadratic Lyapunov functions.  相似文献   

5.
Stochastic epidemic models describe the dynamics of an epidemic as a disease spreads through a population. Typically, only a fraction of cases are observed at a set of discrete times. The absence of complete information about the time evolution of an epidemic gives rise to a complicated latent variable problem in which the state space size of the epidemic grows large as the population size increases. This makes analytically integrating over the missing data infeasible for populations of even moderate size. We present a data augmentation Markov chain Monte Carlo (MCMC) framework for Bayesian estimation of stochastic epidemic model parameters, in which measurements are augmented with subject-level disease histories. In our MCMC algorithm, we propose each new subject-level path, conditional on the data, using a time-inhomogenous continuous-time Markov process with rates determined by the infection histories of other individuals. The method is general, and may be applied to a broad class of epidemic models with only minimal modifications to the model dynamics and/or emission distribution. We present our algorithm in the context of multiple stochastic epidemic models in which the data are binomially sampled prevalence counts, and apply our method to data from an outbreak of influenza in a British boarding school. Supplementary material for this article is available online.  相似文献   

6.
In the simple mean-field SIS and SIR epidemic models, infection is transmitted from infectious to susceptible members of a finite population by independent p-coin tosses. Spatial variants of these models are considered, in which finite populations of size N are situated at the sites of a lattice and infectious contacts are limited to individuals at neighboring sites. Scaling laws for these models are given when the infection parameter p is such that the epidemics are critical. It is shown that in all cases there is a critical threshold for the numbers initially infected: below the threshold, the epidemic evolves in essentially the same manner as its branching envelope, but at the threshold evolves like a branching process with a size-dependent drift. The corresponding scaling limits are super-Brownian motions and Dawson–Watanabe processes with killing, respectively.  相似文献   

7.
A general class of matrix difference equation models for the dynamics of discrete class structured populations in discrete time which possess a certain general type of nonlinearity introduced by Leslie for age-structured populations is considered. Arbitrary structuring is allowed in that transitions between any two classes are permitted. It is shown that normalized class distributions for such nonlinear models globally approach a “stable class distribution” and thus possess a strong ergodic property exactly like that of the classical linear theory of demography. However, unlike in the linear theory according to which the total population size grows or dies exponentially, the dynamics of total population size in these nonlinear models are shown to be governed by a nonlinear, nonautonomous scalar difference equation. This difference equation is asymptotically autonomous, and theorems which relate the dynamics of total population size to those of this limiting equation are proved. Examples in which the results are applied to some nonlinear age-structure models found in the literature are given.  相似文献   

8.
When an advantageous mutation occurs in a population, the favorable allele may spread to the entire population in a short time, an event known as a selective sweep. As a result, when we sample n individuals from a population and trace their ancestral lines backwards in time, many lineages may coalesce almost instantaneously at the time of a selective sweep. We show that as the population size goes to infinity, this process converges to a coalescent process called a coalescent with multiple collisions. A better approximation for finite populations can be obtained using a coalescent with simultaneous multiple collisions. We also show how these coalescent approximations can be used to get insight into how beneficial mutations affect the behavior of statistics that have been used to detect departures from the usual Kingman's coalescent.  相似文献   

9.
Summary Smith (1976,J. R. Statist. Soc., A,139, 183–204) has argued that survey statisticians should attempt to model finite population structures in the same way that statisticians in other disciplines have to provide models of finite or infinite populations. Following this argument, we suggest in this paper that an obvious model for a stratified population when auxiliary information regarding variate values is available, is the one way analysis of covariance model with unequal variances and we consider the problem of estimating the finite population mean. Finally a possible extension of this result is discussed.  相似文献   

10.
We consider sojourn or response times in processor-shared queues that have a finite population of potential users. Computing the response time of a tagged customer involves solving a finite system of linear ODEs. Writing the system in matrix form, we study the eigenvectors and eigenvalues in the limit as the size of the matrix becomes large. This corresponds to finite population models where the total population is $N\gg 1$ . Using asymptotic methods we reduce the eigenvalue problem to that of a standard differential equation, such as the Hermite equation. The dominant eigenvalue leads to the tail of a customer’s sojourn time distribution.  相似文献   

11.
We consider reaction-diffusion-advection models for spatially distributed populations that have a tendency to disperse up the gradient of fitness, where fitness is defined as a logistic local population growth rate. We show that in temporally constant but spatially varying environments such populations have equilibrium distributions that can approximate those that would be predicted by a version of the ideal free distribution incorporating population dynamics. The modeling approach shows that a dispersal mechanism based on local information about the environment and population density can approximate the ideal free distribution. The analysis suggests that such a dispersal mechanism may sometimes be advantageous because it allows populations to approximately track resource availability. The models are quasilinear parabolic equations with nonlinear boundary conditions.  相似文献   

12.
Population genetics is a scientific discipline that has extensively benefitted from mathematical modelling; since the Hardy‐Weinberg law (1908) to date, many mathematical models have been designed to describe the genotype frequencies evolution in a population. Existing models differ in adopted hypothesis on evolutionary forces (such as, for example, mutation, selection, and migration) acting in the population. Mathematical analysis of population genetics models help to understand if the genetic population admits an equilibrium, ie, genotype frequencies that will not change over time. Nevertheless, the existence of an equilibrium is only an aspect of a more complex issue concerning the conditions that would allow or prevent populations to reach the equilibrium. This latter matter, much more complex, has been only partially investigated in population genetics studies. We here propose a new mathematical model to analyse the genotype frequencies distribution in a population over time and under two major evolutionary forces, namely, mutation and selection; the model allows for both infinite and finite populations. In this paper, we present our model and we analyse its convergence properties to the equilibrium genotype frequency; we also derive conditions allowing convergence. Moreover, we show that our model is a generalisation of the Hardy‐Weinberg law and of subsequent models that allow for selection or mutation. Some examples of applications are reported at the end of the paper, and the code that simulates our model is available online at https://www.ding.unisannio.it/persone/docenti/del-vecchio for free use and testing.  相似文献   

13.
Admissible prediction problems in finite populations with arbitrary rank under matrix loss function are investigated. For the general random effects linear model, we obtained the necessary and sufficient conditions for a linear predictor of the linearly predictable variable to be admissible in the two classes of homogeneous linear predictors and all linear predictors and the class that contains all predictors, respectively. Moreover, we prove that the best linear unbiased predictors (BLUPs) of the population total and the finite population regression coefficient are admissible under different assumptions of superpopulation models respectively.  相似文献   

14.
一类带大小结构的多种群模型的有限差分格式   总被引:1,自引:1,他引:0  
本文研究了一类带大小结构的多种群模型,利用有限差分逼近的方法,证明了差分方程的解序列收敛到原系统的弱解.最后,论证了差分方程的解关于初值的连续依赖性.  相似文献   

15.
We study the combined influence of selection and random fluctuations on the evolutionary dynamics of two-strategy (“cooperation” and “defection”) games in populations comprising cooperation facilitators. The latter are individuals that support cooperation by enhancing the reproductive potential of cooperators relative to the fitness of defectors. By computing the fixation probability of a single cooperator in finite and well-mixed populations that include a fixed number of facilitators, and by using mean field analysis, we determine when selection promotes cooperation in the important classes of prisoner’s dilemma, snowdrift and stag-hunt games. In particular, we identify the circumstances under which selection favors the replacement and invasion of defection by cooperation. Our findings, corroborated by stochastic simulations, show that the spread of cooperation can be promoted through various scenarios when the density of facilitators exceeds a critical value whose dependence on the population size and selection strength is analyzed. We also determine under which conditions cooperation is more likely to replace defection than vice versa.  相似文献   

16.
ABSTRACT. Population viability models are commonly used to estimate the probability of persistence of small, threatened, or endangered populations. Demographic, temporal, spatial, and individual heterogeneity are important factors affecting the probability of persistence of small populations. Because stochastic process are intractable analytically (Lud-wig [1996]), computer simulation models are often used for estimating population viability via numerical techniques. Although demographic, spatial, and temporal stochasticity have been incorporated into some population viability models, individual heterogeneity has not been included. In this paper we include individual heterogeneity in a simulation model and examine probabilities of population persistence at different levels of heterogeneity and population size. Individual heterogeneity may increase the probability of persistence of small populations. The mechanism for the extension in persistence may be explained by natural selection. Genotypes persisting through a decline may be those that survive better under the conditions causing the decline. These individuals that survive and reproduce in the face of adverse conditions may extend the probability that a small population persists.  相似文献   

17.
A genetic algorithm (GA) with varying population size is developed where crossover probability is a function of parents’ age-type (young, middle-aged, old, etc.) and is obtained using a fuzzy rule base and possibility theory. It is an improved GA where a subset of better children is included with the parent population for next generation and size of this subset is a percentage of the size of its parent set. This GA is used to make managerial decision for an inventory model of a newly launched product. It is assumed that lifetime of the product is finite and imprecise (fuzzy) in nature. Here wholesaler/producer offers a delay period of payment to its retailers to capture the market. Due to this facility retailer also offers a fixed credit-period to its customers for some cycles to boost the demand. During these cycles demand of the item increases with time at a decreasing rate depending upon the duration of customers’ credit-period. Models are formulated for both the crisp and fuzzy inventory parameters to maximize the present value of total possible profit from the whole planning horizon under inflation and time value of money. Fuzzy models are transferred to deterministic ones following possibility/necessity measure on fuzzy goal and necessity measure on imprecise constraints. Finally optimal decision is made using above mentioned GA. Performance of the proposed GA on the model with respect to some other GAs are compared.  相似文献   

18.
Infinite Leslie matrices, introduced by Demetrius 40 years ago, are mathematical models of age-structured populations defined by a countable infinite number of age classes. This article is concerned with determining solutions of the discrete dynamical system in finite time. We address this problem by appealing to the concept of kneading matrices and kneading determinants. Our analysis is applicable not only to populations models, but also to models of self-reproducing machines and self-reproducing computer programs. The dynamics of these systems can also be described in terms of infinite Leslie matrices.  相似文献   

19.
A model of three interacting populations where two populations engage in competition and two populations are in predator–prey type interaction is proposed and analysed. One of the two competing populations is subject to Allee effects and is also a pest population. The other competing population is regarded as a control agent and is the host for the predator population. There is a constant level of the external control agents released into the interaction at each generation after parasitism. We provide asymptotic dynamics of the competition subsystem and prove that a Neimark–Sacker bifurcation occurs for the host–parasitoid subsystem when the unique interior steady state loses its stability. The three interacting populations are impossible to persist for all positive initial conditions. Sufficient conditions based on the initial population size of the population with Allee effects are derived for persistence of the three populations.  相似文献   

20.
We study some aspects of the relationship between the long time behaviour of systems with a finite but large number of components and their idealizations with countably many components. The following class of models is considered in detail, which contains examples occuring in population growth and population genetic models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号