首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
In this paper, a robust numerical scheme is presented for the reaction diffusion and wave propagation problems. The present method is rather simple and straightforward. The Houbolt method is applied so as to convert both types of partial differential equations into an equivalent system of modified Helmholtz equations. The method of fundamental solutions is then combined with the method of particular solution to solve these new systems of equations. Next, based on the exponential decay of the fundamental solution to the modified Helmholtz equation, the dense matrix is converted into an equivalent sparse matrix. Finally, verification studies on the sensitivity of the method’s accuracy on the degree of sparseness and on the time step magnitude of the Houbolt method are carried out for four benchmark problems.  相似文献   

2.
The theory of Gegenbauer (ultraspherical) polynomial approximation has received considerable attention in recent decades. In particular, the Gegenbauer polynomials have been applied extensively in the resolution of the Gibbs phenomenon, construction of numerical quadratures, solution of ordinary and partial differential equations, integral and integro-differential equations, optimal control problems, etc. To achieve better solution approximations, some methods presented in the literature apply the Gegenbauer operational matrix of integration for approximating the integral operations, and recast many of the aforementioned problems into unconstrained/constrained optimization problems. The Gegenbauer parameter α associated with the Gegenbauer polynomials is then added as an extra unknown variable to be optimized in the resulting optimization problem as an attempt to optimize its value rather than choosing a random value. This issue is addressed in this article as we prove theoretically that it is invalid. In particular, we provide a solid mathematical proof demonstrating that optimizing the Gegenbauer operational matrix of integration for the solution of various mathematical problems by recasting them into equivalent optimization problems with α added as an extra optimization variable violates the discrete Gegenbauer orthonormality relation, and may in turn produce false solution approximations.  相似文献   

3.
It is well known that global convergence has not been established for the Polak-Ribière-Polyak (PRP) conjugate gradient method using the standard Wolfe conditions. In the convergence analysis of PRP method with Wolfe line search, the (sufficient) descent condition and the restriction βk?0 are indispensable (see [4,7]). This paper shows that these restrictions could be relaxed. Under some suitable conditions, by using a modified Wolfe line search, global convergence results were established for the PRP method. Some special choices for βk which can ensure the search direction’s descent property were also discussed in this paper. Preliminary numerical results on a set of large-scale problems were reported to show that the PRP method’s computational efficiency is encouraging.  相似文献   

4.
We present a high‐order shifted Gegenbauer pseudospectral method (SGPM) to solve numerically the second‐order one‐dimensional hyperbolic telegraph equation provided with some initial and Dirichlet boundary conditions. The framework of the numerical scheme involves the recast of the problem into its integral formulation followed by its discretization into a system of well‐conditioned linear algebraic equations. The integral operators are numerically approximated using some novel shifted Gegenbauer operational matrices of integration. We derive the error formula of the associated numerical quadratures. We also present a method to optimize the constructed operational matrix of integration by minimizing the associated quadrature error in some optimality sense. We study the error bounds and convergence of the optimal shifted Gegenbauer operational matrix of integration. Moreover, we construct the relation between the operational matrices of integration of the shifted Gegenbauer polynomials and standard Gegenbauer polynomials. We derive the global collocation matrix of the SGPM, and construct an efficient computational algorithm for the solution of the collocation equations. We present a study on the computational cost of the developed computational algorithm, and a rigorous convergence and error analysis of the introduced method. Four numerical test examples have been carried out to verify the effectiveness, the accuracy, and the exponential convergence of the method. The SGPM is a robust technique, which can be extended to solve a wide range of problems arising in numerous applications. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 307–349, 2016  相似文献   

5.
The classical Gibbs phenomenon exhibited by global Fourier projections and interpolants can be resolved in smooth regions by reprojecting in a truncated Gegenbauer series, achieving high resolution recovery of the function up to the point of discontinuity. Unfortunately, due to the poor conditioning of the Gegenbauer polynomials, the method suffers both from numerical round-off error and the Runge phenomenon. In some cases the method fails to converge. Following the work in [D. Gottlieb, C.W. Shu, Atti Conv. Lincei 147 (1998) 39–48], a more general framework for reprojection methods is introduced here. From this insight we propose an additional requirement on the reprojection basis which ameliorates the limitations of the Gegenbauer reconstruction. The new robust Gibbs complementary basis yields a reliable exponentially accurate resolution of the Gibbs phenomenon up to the discontinuities.  相似文献   

6.
Based on collocation with Haar and Legendre wavelets, two efficient and new numerical methods are being proposed for the numerical solution of elliptic partial differential equations having oscillatory and non-oscillatory behavior. The present methods are developed in two stages. In the initial stage, they are developed for Haar wavelets. In order to obtain higher accuracy, Haar wavelets are replaced by Legendre wavelets at the second stage. A comparative analysis of the performance of Haar wavelets collocation method and Legendre wavelets collocation method is carried out. In addition to this, comparative studies of performance of Legendre wavelets collocation method and quadratic spline collocation method, and meshless methods and Sinc–Galerkin method are also done. The analysis indicates that there is a higher accuracy obtained by Legendre wavelets decomposition, which is in the form of a multi-resolution analysis of the function. The solution is first found on the coarse grid points, and then it is refined by obtaining higher accuracy with help of increasing the level of wavelets. The accurate implementation of the classical numerical methods on Neumann’s boundary conditions has been found to involve some difficulty. It has been shown here that the present methods can be easily implemented on Neumann’s boundary conditions and the results obtained are accurate; the present methods, thus, have a clear advantage over the classical numerical methods. A distinct feature of the proposed methods is their simple applicability for a variety of boundary conditions. Numerical order of convergence of the proposed methods is calculated. The results of numerical tests show better accuracy of the proposed method based on Legendre wavelets for a variety of benchmark problems.  相似文献   

7.
Many subsurface reservoirs compact or subside due to production-induced pressure changes. Numerical simulation of this compaction process is important for predicting and preventing well-failure in deforming hydrocarbon reservoirs. However, development of sophisticated numerical simulators for coupled fluid flow and mechanical deformation modeling requires a considerable manpower investment. This development time can be shortened by loosely coupling pre-existing flow and deformation codes via an interface. These codes have an additional advantage over fully-coupled simulators in that fewer flow and mechanics time steps need to be taken to achieve a desired solution accuracy. Specifically, the length of time before a mechanics step is taken can be adapted to the rate of change in output parameters (pressure or displacement) for the particular application problem being studied. Comparing two adaptive methods (the local error method—a variant of Runge–Kutta–Fehlberg for solving ode’s—and the pore pressure method) to a constant step size scheme illustrates the considerable cost savings of adaptive time stepping for loose coupling. The methods are tested on a simple loosely-coupled simulator modeling single-phase flow and linear elastic deformation. For the Terzaghi consolidation problem, the local error method achieves similar accuracy to the constant step size solution with only one third as many mechanics solves. The pore pressure method is an inexpensive adaptive method whose behavior closely follows the physics of the problem. The local error method, while a more general technique and therefore more expensive per time step, is able to achieve excellent solution accuracy overall.  相似文献   

8.
In this paper, we study the numerical solution to time‐fractional partial differential equations with variable coefficients that involve temporal Caputo derivative. A spectral method based on Gegenbauer polynomials is taken for approximating the solution of the given time‐fractional partial differential equation in time and a collocation method in space. The suggested method reduces this type of equation to the solution of a linear algebraic system. Finally, some numerical examples are presented to illustrate the efficiency and accuracy of the proposed method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper, the Trefftz method of fundamental solution (FS), called the method of fundamental solution (MFS), is used for biharmonic equations. The bounds of errors are derived for the MFS with Almansi’s fundamental solutions (denoted as the MAFS) in bounded simply connected domains. The exponential and polynomial convergence rates are obtained from highly and finitely smooth solutions, respectively. The stability analysis of the MAFS is also made for circular domains. Numerical experiments are carried out for both smooth and singularity problems. The numerical results coincide with the theoretical analysis made. When the particular solutions satisfying the biharmonic equation can be found, the method of particular solutions (MPS) is always superior to the MFS and the MAFS, based on numerical examples. However, if such singular particular solutions near the singular points do not exist, the local refinement of collocation nodes and the greedy adaptive techniques can be used for seeking better source points. Based on the computed results, the MFS using the greedy adaptive techniques may provide more accurate solutions for singularity problems. Moreover, the numerical solutions by the MAFS with Almansi’s FS are slightly better in accuracy and stability than those by the traditional MFS. Hence, the MAFS with the AFS is recommended for biharmonic equations due to its simplicity.  相似文献   

10.
The VIKOR method was developed for multi-criteria optimization of complex systems. It determines the compromise ranking list and the compromise solution obtained with the initial (given) weights. This method focuses on ranking and selecting from a set of alternatives in the presence of conflicting criteria. It introduces the multi-criteria ranking index based on the particular measure of “closeness” to the “ideal” solution. The aim of this paper is to extend the VIKOR method for decision making problems with interval number. The extended VIKOR method’s ranking is obtained through comparison of interval numbers and for doing the comparisons between intervals, we introduce α as optimism level of decision maker. Finally, a numerical example illustrates and clarifies the main results developed in this paper.  相似文献   

11.
We introduce a hybrid Gegenbauer (ultraspherical) integration method (HGIM) for solving boundary value problems (BVPs), integral and integro-differential equations. The proposed approach recasts the original problems into their integral formulations, which are then discretized into linear systems of algebraic equations using Gegenbauer integration matrices (GIMs). The resulting linear systems are well-conditioned and can be easily solved using standard linear system solvers. A study on the error bounds of the proposed method is presented, and the spectral convergence is proven for two-point BVPs (TPBVPs). Comparisons with other competitive methods in the recent literature are included. The proposed method results in an efficient algorithm, and spectral accuracy is verified using eight test examples addressing the aforementioned classes of problems. The proposed method can be applied on a broad range of mathematical problems while producing highly accurate results. The developed numerical scheme provides a viable alternative to other solution methods when high-order approximations are required using only a relatively small number of solution nodes.  相似文献   

12.
In this paper, we present an optimal 25-point finite difference scheme for solving the Helmholtz equation with perfectly matched layer (PML) in two dimensional domain. Based on minimizing the numerical dispersion, we propose the refined choice strategy for choosing optimal parameters of the 25-point finite difference scheme. Numerical experiments are given to illustrate the improvement of the accuracy and the reduction of the numerical dispersion.  相似文献   

13.
In this paper, we present an optimal 25-point finite difference scheme for solving the Helmholtz equation with perfectly matched layer (PML) in two dimensional domain. Based on minimizing the numerical dispersion, we propose the refined choice strategy for choosing optimal parameters of the 25-point finite difference scheme. Numerical experiments are given to illustrate the improvement of the accuracy and the reduction of the numerical dispersion.  相似文献   

14.
In many geoscientific applications, multiple noisy observations of different origin need to be combined to improve the reconstruction of a common underlying quantity. This naturally leads to multi-parameter models for which adequate strategies are required to choose a set of ‘good’ parameters. In this study, we present a fairly general method for choosing such a set of parameters, provided that discrete direct, but maybe noisy, measurements of the underlying quantity are included in the observation data, and the inner product of the reconstruction space can be accurately estimated by the inner product of the discretization space. Then the proposed parameter choice method gives an accuracy that only by an absolute constant multiplier differs from the noise level and the accuracy of the best approximant in the reconstruction and in the discretization spaces.  相似文献   

15.
This paper presents a numerical scheme for approximate solutions of the fractional Volterra’s model for population growth of a species in a closed system. In fact, the Bessel collocation method is extended by using the time-fractional derivative in the Caputo sense to give solutions for the mentioned model problem. In this extended of the method, a generalization of the Bessel functions of the first kind is used and its matrix form is constructed. And then, the matrix form based on the collocation points is formed for the each term of this model problem. Hence, the method converts the model problem into a system of nonlinear algebraic equations. We give some numerical applications to show efficiency and accuracy of the method. In applications, the reliability of the technique is demonstrated by the error function based on accuracy of the approximate solution.  相似文献   

16.
Nanoscale heat transfer cannot be described by the classical Fourier law due to the very small dimension, and therefore, analyzing heat transfer in nanoscale is of crucial importance for the design and operation of nano-devices and the optimization of thermal processing of nano-materials. Recently, time-fractional dual-phase-lagging (DPL) equations with temperature jump boundary conditions have showed promising for analyzing the heat conduction in nanoscale. This article proposes a numerical algorithm with high spatial accuracy for solving the time-fractional dual-phase-lagging nano-heat conduction equation with temperature jump boundary conditions. To this end, we first develop a fourth-order accurate and unconditionally stable compact finite difference scheme for solving this time-fractional DPL model. We then present a fast numerical solver based on the divide-and-conquer strategy for the obtained finite difference scheme in order to reduce the huge computational work and storage. Finally, the algorithm is tested by two examples to verify the accuracy of the scheme and computational speed. And we apply the numerical algorithm for predicting the temperature rise in a nano-scale silicon thin film. Numerical results confirm that the present difference scheme provides ${\rm min}\{2−α, 2−β\}$ order accuracy in time and fourth-order accuracy in space, which coincides with the theoretical analysis. Results indicate that the mentioned time-fractional DPL model could be a tool for investigating the thermal analysis in a simple nanoscale semiconductor silicon device by choosing the suitable fractional order of Caputo derivative and the parameters in the model.  相似文献   

17.
Supplier selection problem, considered as a multi-criteria decision-making (MCDM) problem, is one of the most important issues for firms. Lots of literatures about it have been emitted since 1960s. However, research on supplier selection under operational risks is limited. What’s more, the criteria used by most of them are independent, which usually does not correspond with the real world. Although the analytic network process (ANP) has been proposed to deal with the problems above, several problems make the method impractical. This study first integrates the fuzzy cognitive map (FCM) and fuzzy soft set model for solving the supplier selection problem. This method not only considers the dependent and feedback effect among criteria, but also considers the uncertainties on decision making process. Finally, a case study of supplier selection considering risk factors is given to demonstrate the proposed method’s effectiveness.  相似文献   

18.
A method for solving systems of linear algebraic equations arising in connection with the approximation of boundary value problems for elliptic partial differential equations is proposed. This method belongs to the class of conjugate directions method applied to a preliminary transformed system of equations. A model example is used to explain the idea underlying this method and to investigate it. Results of numerical experiments that confirm the method’s efficiency are discussed.  相似文献   

19.
This article continues the study of the so‐called direct discontinuous Galerkin (DDG) method for diffusion problems as developed in [Liu and Yan, SIAM J Numer Anal 47 (2009), 475–698;, Liu and Yan, Commun Comput Phys 8 (2010), 541–564; C. Vidden and J. Yan, J Comput Math 31 (2013), 638–662; H. Liu, Math Comp (in press)]. A key feature of the DDG method lies with the numerical flux design which includes two (or more) free parameters. This article identifies the class of all admissible numerical flux choices (Theorem 2.2) for degree n polynomial approximations for the symmetric DDG method [C. Vidden and J. Yan, J Comput Math 31 (2013), 638–662], guaranteeing stability of the resulting method. Our main contribution is the new technique of analysis for the DDG admissibility condition. The strategy is to directly evaluate the admissibility condition (Lemma 2.4) by choosing a simple polynomial basis. The admissibility condition is then transformed into an eigenvalue problem resulting in showing needed properties of inverse Hilbert matrices (Lemma 2.3, Appendix). Numerical tests are provided to confirm theoretical results. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 350–367, 2016  相似文献   

20.
The time fractional Fokker‐Planck equation has been used in many physical transport problems which take place under the influence of an external force field. In this paper we examine pseudospectral method based on Gegenbauer polynomials and Chebyshev spectral differentiation matrix to solve numerically a class of initial‐boundary value problems of the time fractional Fokker‐Planck equation on a finite domain. The presented method reduces the main problem to a generalized Sylvester matrix equation, which can be solved by the global generalized minimal residual method. Some numerical experiments are considered to demonstrate the accuracy and the efficiency of the proposed computational procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号