首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
The prism over a graph G is the Cartesian product GK2 of G with the complete graph K2. If the prism over G is hamiltonian, we say that G is prism‐hamiltonian. We prove that triangulations of the plane, projective plane, torus, and Klein bottle are prism‐hamiltonian. We additionally show that every 4‐connected triangulation of a surface with sufficiently large representativity is prism‐hamiltonian, and that every 3‐connected planar bipartite graph is prism‐hamiltonian. © 2007 Wiley Periodicals, Inc. J Graph Theory 57: 181–197, 2008  相似文献   

2.
《Journal of Graph Theory》2018,87(4):526-535
A graph G is hypohamiltonian/hypotraceable if it is not hamiltonian/traceable, but all vertex‐deleted subgraphs of G are hamiltonian/traceable. All known hypotraceable graphs are constructed using hypohamiltonian graphs; here we present a construction that uses so‐called almost hypohamiltonian graphs (nonhamiltonian graphs, whose vertex‐deleted subgraphs are hamiltonian with exactly one exception, see [15]). This construction is an extension of a method of Thomassen [11]. As an application, we construct a planar hypotraceable graph of order 138, improving the best‐known bound of 154 [8]. We also prove a structural type theorem showing that hypotraceable graphs possessing some connectivity properties are all built using either Thomassen's or our method. We also prove that if G is a Grinbergian graph without a triangular region, then G is not maximal nonhamiltonian and using the proof method we construct a hypohamiltonian graph of order 36 with crossing number 1, improving the best‐known bound of 46 [14].  相似文献   

3.
The Kneser graph K(n, k) has as its vertex set all k‐subsets of an n‐set and two k‐subsets are adjacent if they are disjoint. The odd graph Ok is a special case of Kneser graph when n = 2k + 1. A long standing conjecture claims that Ok is hamiltonian for all k>2. We show that the prism over Ok is hamiltonian for all k even. © 2010 Wiley Periodicals, Inc. J Graph Theory 68:177‐188, 2011  相似文献   

4.
A weighted graph is one in which every edge e is assigned a nonnegative number, called the weight of e. The sum of the weights of the edges incident with a vertex υ is called the weighted degree of υ. The weight of a cycle is defined as the sum of the weights of its edges. In this paper, we prove that: (1) if G is a 2‐connected weighted graph such that the minimum weighted degree of G is at least d, then for every given vertices x and y, either G contains a cycle of weight at least 2d passing through both of x and y or every heaviest cycle in G is a hamiltonian cycle, and (2) if G is a 2‐connected weighted graph such that the weighted degree sum of every pair of nonadjacent vertices is at least s, then for every vertex y, G contains either a cycle of weight at least s passing through y or a hamiltonian cycle. AMS classification: 05C45 05C38 05C35. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

5.
We prove that a graph G of order n has a hamiltonian prism if and only if the graph Cl4n/3–4/3(G) has a hamiltonian prism where Cl4n/3–4/3(G) is the graph obtained from G by sequential adding edges between non‐adjacent vertices whose degree sum is at least 4n/3–4/3. We show that this cannot be improved to less than 4n/3–5. © 2006 Wiley Periodicals, Inc. J Graph Theory 54: 209–220, 2007  相似文献   

6.
A graph G is k‐ordered if for every ordered sequence of k vertices, there is a cycle in G that encounters the vertices of the sequence in the given order. We prove that if G is a connected graph distinct from a path, then there is a number tG such that for every ttG the t‐iterated line graph of G, Lt (G), is (δ(Lt (G)) + 1)‐ordered. Since there is no graph H which is (δ(H)+2)‐ordered, the result is best possible. © 2006 Wiley Periodicals, Inc. J Graph Theory 52: 171–180, 2006  相似文献   

7.
Under what conditions is it true that if there is a graph homomorphism GHGT, then there is a graph homomorphism HT? Let G be a connected graph of odd girth 2k + 1. We say that G is (2k + 1)‐angulated if every two vertices of G are joined by a path each of whose edges lies on some (2k + 1)‐cycle. We call G strongly (2k + 1)‐angulated if every two vertices are connected by a sequence of (2k + 1)‐cycles with consecutive cycles sharing at least one edge. We prove that if G is strongly (2k + 1)‐angulated, H is any graph, S, T are graphs with odd girth at least 2k + 1, and ?: GHST is a graph homomorphism, then either ? maps G□{h} to S□{th} for all hV(H) where thV(T) depends on h; or ? maps G□{h} to {sh}□ T for all hV(H) where shV(S) depends on h. This theorem allows us to prove several sufficient conditions for a cancelation law of a graph homomorphism between two box products with a common factor. We conclude the article with some open questions. © 2008 Wiley Periodicals, Inc. J Graph Theory 58:221‐238, 2008  相似文献   

8.
For any nontrivial connected graph F and any graph G, the F-degree of a vertex v in G is the number of copies of F in G containing v. G is called F-continuous if and only if the F-degrees of any two adjacent vertices in G differ by at most 1; G is F-regular if the F-degrees of all vertices in G are the same. This paper classifies all P 4-continuous graphs with girth greater than 3. We show that for any nontrivial connected graph F other than the star K 1,k , k ⩾ 1, there exists a regular graph that is not F-continuous. If F is 2-connected, then there exists a regular F-continuous graph that is not F-regular.   相似文献   

9.
For an integer s ≥ 0, a graph G is s‐hamiltonian if for any vertex subset with |S| ≤ s, G ‐ S is hamiltonian. It is well known that if a graph G is s‐hamiltonian, then G must be (s+2)‐connected. The converse is not true, as there exist arbitrarily highly connected nonhamiltonian graphs. But for line graphs, we prove that when s ≥ 5, a line graph is s‐hamiltonian if and only if it is (s+2)‐connected.  相似文献   

10.
The prism over a graph G is the Cartesian product GK2 of G with the complete graph K2. If G is hamiltonian, then GK2 is also hamiltonian but the converse does not hold in general. Having a hamiltonian prism is shown to be an interesting relaxation of being hamiltonian. In this article, we examine classical problems on hamiltonicity of graphs in the context of having a hamiltonian prism. © 2007 Wiley Periodicals, Inc. J Graph Theory 56: 249–269, 2007  相似文献   

11.
An mcovering of a graph G is a spanning subgraph of G with maximum degree at most m. In this paper, we shall show that every 3‐connected graph on a surface with Euler genus k ≥ 2 with sufficiently large representativity has a 2‐connected 7‐covering with at most 6k ? 12 vertices of degree 7. We also construct, for every surface F2 with Euler genus k ≥ 2, a 3‐connected graph G on F2 with arbitrarily large representativity each of whose 2‐connected 7‐coverings contains at least 6k ? 12 vertices of degree 7. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 26–36, 2003  相似文献   

12.
Given a “forbidden graph” F and an integer k, an F‐avoiding k‐coloring of a graph G is a k‐coloring of the vertices of G such that no maximal F‐free subgraph of G is monochromatic. The F‐avoiding chromatic number acF(G) is the smallest integer k such that G is F‐avoiding k‐colorable. In this paper, we will give a complete answer to the following question: for which graph F, does there exist a constant C, depending only on F, such that acF(G) ? C for any graph G? For those graphs F with unbounded avoiding chromatic number, upper bounds for acF(G) in terms of various invariants of G are also given. Particularly, we prove that ${{ac}}_{{{F}}}({{G}})\le {{2}}\lceil\sqrt{{{n}}}\rceil+{{1}}Given a “forbidden graph” F and an integer k, an F‐avoiding k‐coloring of a graph G is a k‐coloring of the vertices of G such that no maximal F‐free subgraph of G is monochromatic. The F‐avoiding chromatic number acF(G) is the smallest integer k such that G is F‐avoiding k‐colorable. In this paper, we will give a complete answer to the following question: for which graph F, does there exist a constant C, depending only on F, such that acF(G) ? C for any graph G? For those graphs F with unbounded avoiding chromatic number, upper bounds for acF(G) in terms of various invariants of G are also given. Particularly, we prove that ${{ac}}_{{{F}}}({{G}})\le {{2}}\lceil\sqrt{{{n}}}\rceil+{{1}}$, where n is the order of G and F is not Kk or $\overline{{{K}}_{{{k}}}}$. © 2009 Wiley Periodicals, Inc. J Graph Theory 63: 300–310, 2010  相似文献   

13.
A simple graph G is k-ordered (respectively, k-ordered hamiltonian), if for any sequence of k distinct vertices v1,…,vkof G there exists a cycle (respectively, hamiltonian cycle) in G containing these k vertices in the specified order. In 1997 Ng and Schultz introduced these concepts of cycle orderability and posed the question of the existence of 3-regular 4-ordered (hamiltonian) graphs other than K4 and K3,3. Ng and Schultz observed that a 3-regular 4-ordered graph on more than 4 vertices is triangle free. We prove that a 3-regular 4-ordered graph G on more than 6 vertices is square free,and we show that the smallest graph that is triangle and square free, namely the Petersen graph, is 4-ordered. Furthermore, we prove that the smallest graph after K4 and K3,3 that is 3-regular 4-ordered hamiltonianis the Heawood graph. Finally, we construct an infinite family of 3-regular 4-ordered graphs.  相似文献   

14.
Given a graph G whose set of vertices is a Polish space X, the weak Borel chromatic number of G is the least size of a family of pairwise disjoint G ‐independent Borel sets that covers all of X. Here a set of vertices of a graph G is independent if no two vertices in the set are connected by an edge. We show that it is consistent with an arbitrarily large size of the continuum that every closed graph on a Polish space either has a perfect clique or has a weak Borel chromatic number of at most ?1. We observe that some weak version of Todorcevic's Open Coloring Axiom for closed colorings follows from MA. Slightly weaker results hold for Fσ‐graphs. In particular, it is consistent with an arbitrarily large size of the continuum that every locally countable Fσ‐graph has a Borel chromatic number of at most ?1. We refute various reasonable generalizations of these results to hypergraphs (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
In a graph G, the distance from an edge e to a set FE(G) is the vertex distance from e to F in the line graph L(G). For a decomposition of E(G) into k sets, the distance vector of e is the k-tuple of distances from e to these sets. The decomposition dimension dec(G) of G is the smallest k such that G has a decomposition into k sets so that the distance vectors of the edges are distinct. For the complete graph K n and the k-dimensional hypercube Q k , we prove that (2–o(1))lgndec(K n )(3.2+o(1))lgn and k/lgk dec(Q k ) (3.17+o(1))k/lgk. The upper bounds use probabilistic methods directly or indirectly. We also prove that random graphs with edge probability p such that p n 1– for some positive constant have decomposition dimension (lnn) with high probability. Acknowledgments.The authors thank Noga Alon for clarifying and strengthening the results in Sections 3 and 4. Thanks also go to a referee for repeated careful readings and suggestions.AMS classifications: 05C12, 05C35, 05D05, 05D40  相似文献   

16.
For a fixed (multi)graph H, a graph G is H‐linked if any injection f: V(H)→V(G) can be extended to an H‐subdivision in G. The notion of an H ‐linked graph encompasses several familiar graph classes, including k‐linked, k‐ordered and k‐connected graphs. In this article, we give two sharp Ore‐type degree sum conditions that assure a graph G is H ‐linked for arbitrary H. These results extend and refine several previous results on H ‐linked, k‐linked, and k‐ordered graphs. © 2011 Wiley Periodicals, Inc. J Graph Theory 71:69–77, 2012  相似文献   

17.
A sequence r1, r2, …, r2n such that ri=rn+ i for all 1≤in is called a repetition. A sequence S is called non‐repetitive if no block (i.e. subsequence of consecutive terms of S) is a repetition. Let G be a graph whose edges are colored. A trail is called non‐repetitive if the sequence of colors of its edges is non‐repetitive. If G is a plane graph, a facial non‐repetitive edge‐coloring of G is an edge‐coloring such that any facial trail (i.e. a trail of consecutive edges on the boundary walk of a face) is non‐repetitive. We denote π′f(G) the minimum number of colors of a facial non‐repetitive edge‐coloring of G. In this article, we show that π′f(G)≤8 for any plane graph G. We also get better upper bounds for π′f(G) in the cases when G is a tree, a plane triangulation, a simple 3‐connected plane graph, a hamiltonian plane graph, an outerplanar graph or a Halin graph. The bound 4 for trees is tight. © 2010 Wiley Periodicals, Inc. J Graph Theory 66: 38–48, 2010  相似文献   

18.
It is proven that if G is a 3‐connected claw‐free graph which is also H1‐free (where H1 consists of two disjoint triangles connected by an edge), then G is hamiltonian‐connected. Also, examples will be described that determine a finite family of graphs such that if a 3‐connected graph being claw‐free and L‐free implies G is hamiltonian‐connected, then L . © 2002 Wiley Periodicals, Inc. J Graph Theory 40: 104–119, 2002  相似文献   

19.
We write HG if every 2‐coloring of the edges of graph H contains a monochromatic copy of graph G. A graph H is Gminimal if HG, but for every proper subgraph H′ of H, H′ ? G. We define s(G) to be the minimum s such that there exists a G‐minimal graph with a vertex of degree s. We prove that s(Kk) = (k ? 1)2 and s(Ka,b) = 2 min(a,b) ? 1. We also pose several related open problems. © 2006 Wiley Periodicals, Inc. J Graph Theory 54: 167–177, 2007  相似文献   

20.
Let G = (V(G),E(G)) be a graph. A (ν, G, λ)‐GD is a partition of all the edges of λKν into subgraphs (G‐blocks), each of which is isomorphic to G. The (ν, G, λ)‐GD is named as graph design for G or G‐decomposition. The large set of (ν, G, λ)‐GD is denoted by (ν, G, λ)‐LGD. In this paper, we obtain a general result by using the finite fields, that is, if qk ≥ 2 is an odd prime power, then there exists a (q,Pk, k ? 1)‐LGD. © 2005 Wiley Periodicals, Inc. J Combin Designs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号