首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Chang [1] [H.-C. Chang, A comprehensive note on: an economic order quantity with imperfect quality and quantity discounts, Appl. Math. Model. 35 (10) (2011) 5208-5216] corrects a flaw in Lin’s inventory model [T.Y. Lin, An economic order quantity with imperfect quality and quantity discounts, Appl. Math. Model. 34 (10) (2010) 3158–3165]. Then, he develops an algorithm to find the optimal solution for the corrected Lin’s inventory model and furthermore derives close form expressions to determining the optimal solution to an EOQ inventory model considering items with imperfect quality with different holding costs for good and defective items. In both models there is a discrete variable and he presents some inequalities in order to find the integer value. This paper provides some simple formulas to obtain, in an easy way, the integral value for the discrete variable.  相似文献   

2.
The classical economic production quantity (EPQ) model assumes that items are produced by a perfectly reliable production process with a fixed set-up cost. While the reliability of the production process cannot be perfected cost-free, the set-up cost can be reduced by investment in flexibility improvement. In this paper, we propose an EPQ model with a flexible and imperfect production process. We formulate this inventory decision problem using geometric programming (GP), establish more general results using the arithmetic-geometric mean inequality, and solve the problem to obtain a closed-form optimal solution. Following the theoretical treatment, we provide a numerical example to demonstrate that GP has potential as a valuable analytical tool for studying a certain class of inventory control problems. Finally we discuss some aspects of sensitivity analysis of the optimal solution based on the GP approach.  相似文献   

3.
The assumptions required to justify the use of the economic order quantity model (EOQ) are rarely met. To provide mathematical models that more closely represent real-life situations, these assumptions must be relaxed. Among these assumptions are, first, items stocked are of perfect quality, and second, they preserve their characteristics during their stay in inventory. This paper considers a modified EOQ-type inventory model for a deteriorating item with unreliable supply. That is, a percentage of the on-hand inventory is wasted due to deterioration. Moreover, orders may contain a random proportion of defective items, which follow a known distribution. As soon as an order is received, a retailer conducts a screening process to identify imperfect quality items, which are salvaged as a single batch at the end of the screening process. First, a mathematical model is developed, assuming that no shortages are allowed. For that, it is assumed that the inventory level when placing an order is just enough to cover the demand during the screening period. The concavity of the profit function is established and sensitivity analysis is provided to analyze the impact of changing various model parameters on the optimal order quantity and profit. Then, the assumption of no shortages is relaxed, and a model is developed to incorporate backorders. We analyze the model with backorders numerically and provide managerial insights.  相似文献   

4.
Economic manufacturing quantity, process mean, and specification limits setting are three important methods for the inventory and quality control problems. In the imperfect production system, we usually consider the manufacturing quantity for reducing the inventory cost, determine the process level for reducing the production cost, and select the specification limits for screening the products. In this paper, we propose the above integrated model based on the application of rectifying inspection plan for obtaining maximum expected total profit of product. The asymmetric quadratic quality loss function is adopted for measuring the product quality. The sensitivity analyses of parameters are provided for illustration.  相似文献   

5.
Most researchers established their inventory lot-size models under trade credit financing by assuming that the supplier offers the retailer fully permissible delay in payments and the products received are all non-defective. However, in the real business environment, it often can be observed that the supplier offers the retailer a fully permissible delay in payments only when the order quantity is greater than or equal to the predetermined quantity Q d . In addition, an arriving order lot usually contains some defective items due to imperfect production processes or other factors. To capture this reality, the paper extends Huang (2007) economic order quantity (EOQ) model with partially permissible delay in payments to consider defective items. We formulate the proposed problem as a profit maximization EOQ model in which the replenishment cycle time is the decision variable. Then we use the arithmetic-geometric mean inequality approach to determine the optimal solution under various situations. An algorithm to obtain the optimal solution is also provided. Finally, the numerical examples and sensitivity analysis are given to illustrate the results.  相似文献   

6.
This paper deals with an economic production quantity (EPQ) inventory model with reworkable defective items when a given multi-shipment policy is used. In this work, it is assumed that in each cycle, the rework process of all defective items starts when the regular production process finishes. After the rework process, a portion of reworked items fails. This portion becomes scrap and only the perfect finished items can be delivered to customers at the end of rework process. A profit function is derived to model the inventory problem and it is shown that the profit function is concave. Due to the complexity of the optimization problem, an algorithm is developed to determine the optimal values of manufacturing lot size and price such that the long-run average profit function is maximized. Furthermore, two special cases are identified and explained. Finally, a numerical example is given to illustrate the applicability of the proposed inventory model.  相似文献   

7.
Chuang-Chun Chiou  L. Ho-Chun Chen 《PAMM》2007,7(1):2060077-2060078
The classic EPQ model assumes that items are produced of perfect quality and no shortage is permitted. In the real world situation, however, due to process deterioration or other factors, the occurrence of imperfect quality items is inevitable. This paper develops an extended economic production quantity (EPQ) model with imperfect production, shortage, and imperfect rework. We assume that the quality scan is conducted during the production. The scanned imperfect items are classified as the repairable and scrap. We consider that not all of the repairable items can be restored to meet the specified quality standard. Only some portion of defective items can be restored as normal items, the other results in defective, due to repair failure, can be sold at a discounted price to a secondary market. The renewal reward theorem is utilized to deal with the variable cycle length. The production quantity and the shortage level are determined in an optimal manner so as to minimize the average system cost. A numerical example is used to demonstrate its practical usage. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
This paper considers a production/inventory system where items produced/purchased are of different qualities: Types A and B. Type A items are of perfect quality, and Type B items are of imperfect quality; but not necessarily defective; and have a lower selling price. The percentage of Type A (the yield rate) is assumed to be a random variable with known probability distribution. The electronics industry gives good examples of such situations. We extend the classical single period (newsvendor) and the economic order quantity (EOQ) models by accounting for random supply and for imperfect quality (Type B) items which are assumed to have their own demand and cost structure. We develop mathematical models and prove concavity of the expected profit function for both situations. We also present detailed analysis and numerical results. We focus on comparing the profitability of the novel proposed models with models from the literature (and derivatives of these models) that develop the optimal order quantity based on the properties of Type A items only (and ignore Type B items). We find that accounting for Type B items can significantly improve profitability.  相似文献   

9.
The paper develops a model to determine the optimal product reliability and production rate that achieves the biggest total integrated profit for an imperfect manufacturing process. The basic assumption of the classical Economic Manufacturing Quantity (EMQ) model is that all manufacturing items are of perfect quality. The assumption is not true in practice. Most of the production system produces perfect and imperfect quality items. In some cases the imperfect quality (non conforming) items are reworked at a cost to restore its quality to the original one. Rework cost may be reduced by improvements in product reliability (i.e., decreasing in product reliability parameter). Lower value of product reliability parameter results in increase development cost of production and also smaller quantity of nonconforming products. The unit production cost is a function of product reliability parameter and production rate. As a result, higher development cost increases unit production cost. The problem of optimal planning work and rework processes belongs to the broad field of production–inventory model which deals with all kinds of reuse processes in supply chains. These processes aim to recover defective product items in such a way that they meet the quality level of ‘good item’. The benefits from imperfect quality items are: regaining the material and value added on defective items and improving the environment protection. In this point of view, a model is introduced here to guide a firm/industry in addressing variable product reliability factor, variable unit production cost and dynamic production rate for time-varying demand. The paper provides an optimal control formulation of the problem and develops necessary and sufficient conditions for optimality of the dynamic variables. In this purpose, the Euler–Lagrange method is used to obtain optimal solutions for product reliability parameter and dynamic production rate. Finally, numerical examples are given to illustrate the proposed model.  相似文献   

10.
This paper considers an economic production quantity (EPQ) model with imperfect production processes, in which the setup cost and process quality are functions of capital expenditure. The mathematical model is derived to investigate the effects of an imperfect production process on the optimal production cycle time when capital investment strategies in setup reduction and process quality improvement are adopted. An efficient procedure is developed to find the optimal production run length, setup cost and process quality. Finally, a numerical example is provided to illustrate the theoretical results. Some managerial implications are also included.  相似文献   

11.
在产品质量不完备的环境下,考虑了需求依赖于质量水平的报童问题。本文主要利用马氏理论刻画质量水平与需求之间关联性的动态演变过程,并将“不完备质量”的决策理念纳入报童问题的理论框架,进而提出了新的随机库存系统的优化模型及其决策机制。同时,利用随机质量过程中的首达性、遍历性、不可约性等基本属性,构建了随机库存系统在运作和管理过程中的可靠性及其收益评估机制。模型的相关结论表明:在不完备质量的环境下,零售商的最优订购决策是由各个质量状态的转移概率所确定,若由质量水平的波动性所导出的随机过程为不可约遍历马氏链时,则库存系统的决策机制具有良好的稳定性。  相似文献   

12.
在供应商给予零售商延期支付和现金折扣的优惠政策下,进一步假设产品的年需求量依赖于零售商产品售价的基础上,建立了由一个零售商和一个供应商所构成的库存决策模型,扩展了经典的经济生产批量(EPQ)模型。通过模型的分析求解,可以得出零售商在上述情况下的最优订货周期、最优售价及最优付款时间的简单判定方法。最后,通过算例,验证了模型的可行性,得出了与实际相符的结论。  相似文献   

13.
Some classical studies on economic production quantity (EPQ) models with imperfect production processes have focused on determining the optimal production lot size. However, these models neglect the fact that the total production-inventory costs can be reduced by reworking imperfect items for a relatively small repair and holding cost. To account for the above phenomenon, we take the out of stock and rework into account and establish an EPQ model with imperfect production processes, failure in repair and complete backlogging. Furthermore, we assume that the holding cost of imperfect items is distinguished from that of perfect ones, as well as, the costs of repair, disposal, and shortage are all included in the proposed model. In addition, without taking complex differential calculus to determine the optimal production lot size and backorder level, we employ an arithmetic-geometric mean inequality method to determine the optimal solutions. Finally, numerical examples and sensitivity analysis are analyzed to illustrate the validity of the proposed model. Some managerial insights are obtained from the numerical examples.  相似文献   

14.
Research on sustainability performance has considerably enriched operations management literature in recent years. However, work with quantitative models is still scarce. This paper contributes by revisiting classical inventory methods taking sustainability concerns into account. We believe that reducing all aspects of sustainable development to a single objective is not desirable. We thus reformulate the classical economic order quantity model as a multiobjective problem. We refer to this model as the sustainable order quantity model. Then, a multi-echelon extension of the sustainable order quantity model is studied. For both models, the set of efficient solutions (Pareto optimal solutions) is analytically characterized. These results are used to provide some insights about the effectiveness of different regulatory policies to control carbon emissions. We also use an interactive procedure that allows the decision maker to quickly identify the best option among these solutions. The proposed interactive procedure is a new combination of multi-criteria decision analysis techniques.  相似文献   

15.
Previous studies in the issue of inventory models with imperfect quality assumed the defectives could be sold in a batch by the end of the inspection process and the manufacturing systems were push systems. However, the above assumptions may not be true in the pull system in which buyer is powerful. Therefore, in this paper, we develop a new inventory model for items with imperfect quality and quantity discounts where buyer has exerted power over its supplier. Based on the concept of powerful buyer, there are three considerations included in this new model: (1) the order quantity is manufactured at one setup and is shipped over multiple deliveries, (2) the defectives are screened out by a 100% inspection for each shipment but sold in a batch by the end of inspection at the last shipment of each cycle, and (3) the supplier offers quantity discounts to response the request of the powerful buyer. Further, an algorithm is developed to help the powerful buyer to determine the optimal order policy accurately and quickly. Two numerical examples are available in this paper to illustrate the proposed model and algorithm. Besides, based on the numerical examples, a sensitivity analysis is made to investigate the effects of four important parameters (the inspection rate, the defective rate, the receiving cost, and the ordering cost) on the optimal solution.  相似文献   

16.
A fundamental assumption in traditional inventory models is that all of the ordered items are of perfect quality. A two-level supply chain is considered consists of one retailer and a collection of suppliers that operate within a finite planning horizon, including multiple periods, and a model is formulated that simultaneously determines both supplier selection and inventory allocation problems in the supply chain. It is supposed that the ordered products dependent on the suppliers include a certain percentage of imperfect quality products and have different prices. In this paper, we study the impact of the retailer’s financial constraint. On the other hand, suppliers have restricted capacities and set minimum order quantity (MOQ) policy for the retailer’s order amount happened in each period. So, the problem is modeled as a mixed integer nonlinear programming. The purpose of this model is to maximize the total profit. The nutrients, fishery and fruitage industries give good examples for the proposed model. A numerical example is presented to indicate the efficiency of the proposed model. Considering the complexity of the model, a genetic algorithm (GA) is presented to solve the model. We demonstrate analytically that the proposed genetic algorithm is suitable in the feasible situations.  相似文献   

17.
The classical economic order quantity (EOQ) model assumes that items produced are of perfect quality and that the unit cost of production is independent of demand. However, in realistic situations, product quality is never perfect, but is directly affected by the reliability of the production process. In this paper, we consider an EOQ model with imperfect production process and the unit production cost is directly related to process reliability and inversely related to the demand rate. In addition, a numerical example is given to illustrate the developed model. Sensitivity analysis is also performed and discussed.  相似文献   

18.
For high-value added products, machining tools’ lifespan significantly influences the quantity of procurement in machining process. Preemption of tools from the workpiece while processing is continuing is sometime beneficial to safeguard the product from the damage due to tool failure or its malfunction. Also an early discard of a tool is costly for the manufacturing operation. Therefore an optimal strategy for the tool life is sought here to determine the maximum allowable tool lifespan to preempt from the workpiece and to have an appropriate amount of tool stock in the crib to ascertain the proper running of the production schedule and tool inventory. Therefore, an impact of the machining tool lifespan on the production-inventory policy of the system is investigated in this paper. An integrated lifespan related inventory model for machining tools is developed to meet the responding accurate requirement of procurement and inventory. Two numerical examples are presented to illustrate the integrated model. The results show that the practical lifespan adoption of machining tools has significant impact on the whole quantity of procurement, and eventually influences the coordinating economic decision making.  相似文献   

19.
Facing to imperfect quality and fuzzy random market demand in the real-life inventory management, a two-echelon supply chain system with one retailer and one manufacturer for perishable products is considered. Two fuzzy random models for the newsboy problem with imperfect quality in the decentralized and centralized systems are presented. The expectation theory and signed distance are employed to transform the fuzzy random model into crisp model. The optimal policies in the two decision-making systems are derived and analyzed contrastively. The theoretical analysis shows that manufacturer’s repurchase strategy can achieve the increase in the whole supply chain profit. The influence of the fuzzy randomness of the demand and the defective rate on the optimal order quantity, the whole supply chain profit and the repurchasing price is analyzed via numerical examples.  相似文献   

20.
This paper deals with an economic production quantity inventory model for non-instantaneous deteriorating items under inflationary conditions considering customer returns. We adopt a price- and time-dependent demand function. Also, the customer returns are considered as a function of both price and demand. The effects of time value of money are studied using the Discounted Cash Flow approach. The main objective is to determine the optimal selling price, the optimal replenishment cycles, and the optimal production quantity simultaneously such that the present value of total profit is maximized. An efficient algorithm is presented to find the optimal solution. Finally, numerical examples are provided to solve the presented inventory model using our proposed algorithm, which is further clarified through a sensitivity analysis. The results of analysing customer returns provide important suggestions to financial managers who use price as a control to match the quantity sold to inventory while maximizing revenues. The paper ends with a conclusion and an outlook to future studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号