首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
A compact finite difference method is designed to obtain quick and accurate solutions to partial differential equation problems. The problem of pricing an American option can be cast as a partial differential equation. Using the compact finite difference method this problem can be recast as an ordinary differential equation initial value problem. The complicating factor for American options is the existence of an optimal exercise boundary which is jointly determined with the value of the option. In this article we develop three ways of combining compact finite difference methods for American option price on a single asset with methods for dealing with this optimal exercise boundary. Compact finite difference method one uses the implicit condition that solutions of the transformed partial differential equation be nonnegative to detect the optimal exercise value. This method is very fast and accurate even when the spatial step size h   is large (h?0.1)(h?0.1). Compact difference method two must solve an algebraic nonlinear equation obtained by Pantazopoulos (1998) at every time step. This method can obtain second order accuracy for space x and requires a moderate amount of time comparable with that required by the Crank Nicolson projected successive over relaxation method. Compact finite difference method three refines the free boundary value by a method developed by Barone-Adesi and Lugano [The saga of the American put, 2003], and this method can obtain high accuracy for space x. The last two of these three methods are convergent, moreover all the three methods work for both short term and long term options. Through comparison with existing popular methods by numerical experiments, our work shows that compact finite difference methods provide an exciting new tool for American option pricing.  相似文献   

2.
Abstract

We develop and apply a numerical scheme for pricing options in the stochastic volatility model proposed by Barndorff–Nielsen and Shephard. This non-Gaussian Ornstein–Uhlenbeck type of volatility model gives rise to an incomplete market, and we consider the option prices under the minimal entropy martingale measure. To numerically price options with respect to this risk neutral measure, one needs to consider a Black and Scholes type of partial differential equation, with an integro-term arising from the volatility process. We suggest finite difference schemes to solve this parabolic integro-partial differential equation, and derive appropriate boundary conditions for the finite difference method. As an application of our algorithm, we consider price deviations from the Black and Scholes formula for call options, and the implications of the stochastic volatility on the shape of the volatility smile.  相似文献   

3.
考虑了CEV与Kou双指数跳-扩散组合模型中的期权定价问题.首先,运用Ito公式和期权定价的无套利原理,得到了模型下期权价格所满足的偏积-微分方程.然后,运用中心差分和Lagrange线性插值,分别对偏积-微分方程中的微分项和积分项进行离散化处理,再由Euler法,最终得了偏积-微分方程的有限差分格式,并且对差分方法的误差和收敛性进行了分析.最后数值实验验证了该算法是一个稳定且收敛的算法.  相似文献   

4.
In this article, differential quadrature method (DQM), a highly accurate and efficient numerical method for solving nonlinear problems, is used to overcome the difficulty in determining the optimal exercise boundary of American option. The following three parts of the problem in pricing American options are solved. The first part is how to treat the uncertainty of the early exercise boundary, or free boundary in the language of the PDE treatment of the American option, because American options can be exercised before the date of expiration. The second part is how to solve the nonlinear problem, because the problem of pricing American options is nonlinear. And the third part is how to treat the initial value condition with the singularity and the boundary conditions in the DQM. Numerical results for the free boundary of American option obtained by both DQM and finite difference method (FDM) are given and from which it can be seen the computational efficiency is greatly improved by DQM. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 711–725, 2002; Published online in Wiley InterScience (www.interscience.wiley.com); DOI 10.1002/num.10028.  相似文献   

5.
In this paper we present a stable numerical method for the linear complementary problem arising from American put option pricing. The numerical method is based on a hybrid finite difference spatial discretization on a piecewise uniform mesh and an implicit time stepping technique. The scheme is stable for arbitrary volatility and arbitrary interest rate. We apply some tricks to derive the error estimates for the direct application of finite difference method to the linear complementary problem. We use the Singularity-Separating method to remove the singularity of the non-smooth payoff function. It is proved that the scheme is second-order convergent with respect to the spatial variable. Numerical results support the theoretical results.  相似文献   

6.
王越  周圣武 《大学数学》2021,37(1):10-17
主要研究基于CEV过程且支付交易费的脆弱期权定价的数值计算问题.首先通过构造无风险投资组合,导出了基于CEV过程且支付交易费用的脆弱期权定价的偏微分方程模型;其次应用有限差分方法将定价模型离散化,并设计数值算法;最后以看跌期权为例进行数值试验,分析各定价参数对看跌期权价值的影响.  相似文献   

7.
In this study, we derive optimal uniform error bounds for moving least‐squares (MLS) mesh‐free point collocation (also called finite point method) when applied to solve second‐order elliptic partial integro‐differential equations (PIDEs). In the special case of elliptic partial differential equations (PDEs), we show that our estimate improves the results of Cheng and Cheng (Appl. Numer. Math. 58 (2008), no. 6, 884–898) both in terms of the used error norm (here the uniform norm and there the discrete vector norm) and the obtained order of convergence. We then present optimal convergence rate estimates for second‐order elliptic PIDEs. We proceed by some numerical experiments dealing with elliptic PDEs that confirm the obtained theoretical results. The article concludes with numerical approximation of the linear parabolic PIDE arising from European option pricing problem under Merton's and Kou's jump‐diffusion models. The presented computational results (including the computation of option Greeks) and comparisons with other competing approaches suggest that the MLS collocation scheme is an efficient and reliable numerical method to solve elliptic and parabolic PIDEs arising from applied areas such as financial engineering.  相似文献   

8.
We derive a new high-order compact finite difference scheme for option pricing in stochastic volatility models. The scheme is fourth order accurate in space and second order accurate in time. Under some restrictions, theoretical results like unconditional stability in the sense of von Neumann are presented. Where the analysis becomes too involved we validate our findings by a numerical study. Numerical experiments for the European option pricing problem are presented. We observe fourth order convergence for non-smooth payoff.  相似文献   

9.
The option pricing problem when the asset is driven by a stochastic volatility process and in the presence of transaction costs leads to solving a nonlinear partial differential equation. The nonlinear term in the PDE reflects the presence of transaction costs. Under a particular market completion assumption we derive the nonlinear PDE whose solution may be used to find the price of options. In this paper under suitable conditions, we give an algorithmic scheme to obtain the solution of the problem by an iterative method and provide numerical solutions using the finite difference method.  相似文献   

10.
In this article, we study the numerical solutions of a class of complex partial differential equation (PDE) systems with free boundary conditions. This problem arises naturally in pricing American options with regime‐switching, which adds significant complexity in the PDE systems due to regime coupling. Developing efficient numerical schemes will have important applications in computational finance. We propose a new method to solve the PDE systems by using a penalty method approach and an exponential time differencing scheme. First, the penalty method approach is applied to convert the free boundary value PDE system to a system of PDEs over a fixed rectangular region for the time and spatial variables. Then, a new exponential time differncing Crank–Nicolson (ETD‐CN) method is used to solve the resulting PDE system. This ETD‐CN scheme is shown to be second order convergent. We establish an upper bound condition for the time step size and prove that this ETD‐CN scheme satisfies a discrete version of the positivity constraint for American option values. The ETD‐CN scheme is compared numerically with a linearly implicit penalty method scheme and with a tree method. Numerical results are reported to illustrate the convergence of the new scheme. © 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2013  相似文献   

11.
Many of the different numerical techniques in the partial differential equations framework for solving option pricing problems have employed only standard second-order discretization schemes. A higher-order discretization has the advantage of producing low size matrix systems for computing sufficiently accurate option prices and this paper proposes new computational schemes yielding high-order convergence rates for the solution of multi-factor option problems. These new schemes employ Galerkin finite element discretizations with quadratic basis functions for the approximation of the spatial derivatives in the pricing equations for stochastic volatility and two-asset option problems and time integration of the resulting semi-discrete systems requires the computation of a single matrix exponential. The computations indicate that this combination of high-order finite elements and exponential time integration leads to efficient algorithms for multi-factor problems. Highly accurate European prices are obtained with relatively coarse meshes and high-order convergence rates are also observed for options with the American early exercise feature. Various numerical examples are provided for illustrating the accuracy of the option prices for Heston’s and Bates stochastic volatility models and for two-asset problems under Merton’s jump-diffusion model.  相似文献   

12.
期权作为一种金融衍生产品,在欧美国家一直很受欢迎.由于其规避风险的特性,期权也吸引了中国投资者的兴趣.基于市场的需求,2015年初,上海证券交易所推出了中国首批期权产品,期权定价问题的研究热潮正席卷全球.本文研究的美式回望期权,是一种路径相关的期权,其支付函数不仅依赖于标的资产的现值,也依赖其历史最值.分析回望期权的特点,不难发现:1)这类期权空间变量的变化范围为二维无界不规则区域,难以应用数值方法直接求解;2)最佳实施边界未知,使得该问题变得高度非线性.本文的主要工作就是解决这两个困难,得到回望期权和最佳实施边界的数值逼近结果.现有的处理问题1)的有效方法是采用标准变量替换、计价单位变换以及Landau变换将定价模型化为一个[0,1]区间上的非线性抛物问题,本文也将沿用这些技巧处理问题1).进一步,采用有限元方法离散简化后的定价模型,并论证了数值解的非负性,提出了利用Newton法求解离散化的非线性系统.最后,通过数值模拟,验证了本文所提算法的高效性和准确性.  相似文献   

13.
In this paper, an implicit‐explicit two‐step backward differentiation formula (IMEX‐BDF2) together with finite difference compact scheme is developed for the numerical pricing of European and American options whose asset price dynamics follow the regime‐switching jump‐diffusion process. It is shown that IMEX‐BDF2 method for solving this system of coupled partial integro‐differential equations is stable with the second‐order accuracy in time. On the basis of IMEX‐BDF2 time semi‐discrete method, we derive a fourth‐order compact (FOC) finite difference scheme for spatial discretization. Since the payoff function of the option at the strike price is not differentiable, the results show only second‐order accuracy in space. To remedy this, a local mesh refinement strategy is used near the strike price so that the accuracy achieves fourth order. Numerical results illustrate the effectiveness of the proposed method for European and American options under regime‐switching jump‐diffusion models.  相似文献   

14.
This paper deals with the construction of a finite difference scheme and the numerical analysis of its solution for a nonlinear Black–Scholes partial differential equation modelling stock option pricing in the realistic case when transaction costs arising in the hedging of portfolios are taken into account. The analysed model is the Barles–Soner one for which an appropriate fully nonlinear numerical method has not still applied. After construction of the numerical solution, consistency and stability are studied and some illustrative examples are included.  相似文献   

15.
用有限差分方法研究欧氏看涨期权定价问题.首先,将Black-Scholes方程通过等价代换化成一个标准的抛物型偏微分方程.其次,在求解区域构造时间精度为O(△τ^3)、空间精度为O(h^6)的差分格式,并通过Fourier分析方法证明该差分格式是无条件稳定的;边界区域选用精度较高、稳定性好的Crank-Nicolson格式,建立迭代方程.然后,用GMRES(generalized minimal residual)方法求解该方法.最后,给出一个欧氏看涨期权的数值算例,并与解析解进行比较,验证差分格式的有效性.  相似文献   

16.
We present a novel numerical scheme for the valuation of options under a well‐known jump‐diffusion model. European option pricing for such a case satisfies a 1 + 2 partial integro‐differential equation (PIDE) including a double integral term, which is nonlocal. The proposed approach relies on nonuniform meshes with a focus on the discontinuous and degenerate areas of the model and applying quadratically convergent finite difference (FD) discretizations via the method of lines (MOL). A condition for observing the time stability of the fully discretized problem is given. Also, we report results of numerical experiments.  相似文献   

17.
Compared to the classical Black-Scholes model for pricing options, the Finite Moment Log Stable (FMLS) model can more accurately capture the dynamics of the stock prices including large movements or jumps over small time steps. In this paper, the FMLS model is written as a fractional partial differential equation and we will present a new numerical scheme for solving this model. We construct an implicit numerical scheme with second order accuracy for the FMLS and consider the stability and convergence of the scheme. In order to reduce the storage space and computational cost, we use a fast bi-conjugate gradient stabilized method (FBi-CGSTAB) to solve the discrete scheme. A numerical example is presented to show the efficiency of the numerical method and to demonstrate the order of convergence of the implicit numerical scheme. Finally, as an application, we use the above numerical technique to price a European call option. Furthermore, by comparing the FMLS model with the classical B-S model, the characteristics of the FMLS model are also analyzed.  相似文献   

18.
考虑了基于近似对冲跳跃风险的美式看跌期权定价问题。首先,运用近似对冲跳跃风险、广义It 公式及无套利原理,得到了跳-扩散过程下的期权定价模型及期权价格所满足的偏微分方程。然后建立了美式看跌期权定价模型的隐式差分近似格式,并且证明了该差分格式具有的相容性、适定性、稳定性和收敛性。最后,数值实验表明,用本文方法为跳-扩散模型中的美式期权定价是可行的和有效的。  相似文献   

19.
基于Black-Scholes模型,采用指数拟合有限差分法与外推的指数拟合有限差分法对美式看跌期权价值进行了数值计算,对这两种数值方法及其与已往的显式、隐式、C-N等有限差分的优缺点进行了比较,并给出数值算例,通过对此算例做的一系列数值试验,验证了算法的有效性,并得到了一些在期权交易的实际操作中有用的结果.  相似文献   

20.
研究了欧式看涨期权定价问题的差分方法,将Black-Scholes方程等价代换为标准抛物型偏微分方程,在时间方向上采用前、后差商,空间方向上采用五点差分格式,再引入参数θ建立一个稳定的混合差分格式.根据Von Neumann条件证明了该格式的稳定性及收敛性,并通过数值计算的实际应用,结果表明该算法适用于到期日较长的期权...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号