首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biogeography-based optimization (BBO) is a competitive population optimization algorithm based on biogeography theory with inherently insufficient exploration capability and slow convergence speed. To overcome limitations, we propose an improved variant of BBO, named PRBBO, for solving global optimization problems. In PRBBO, a hybrid migration operator with random ring topology, a modified mutation operator, and a self-adaptive Powell's method are rational integrated together. The hybrid migration operator with random ring topology, denoted as RMO, is created by using local ring topology to replace global topology, which can avoid the asymmetrical migration operation and enhance potential population diversity. The self-adaptive Powell's method is amended by using self-adaptive parameters for suiting evolution process to enhance solution precision quickly. Extensive experimental tests are carried out on 24 benchmark functions to show effectiveness of the proposed algorithm. Simulation results were compared with original BBO, ABC, DE, other variants of the BBO, and other state-of-the-art evolutionary algorithms. Finally, the effectiveness of operators on the performance of PRBBO is also discussed.  相似文献   

2.
A real-coded biogeography-based optimization with mutation   总被引:2,自引:0,他引:2  
Biogeography-based optimization (BBO) is a new biogeography inspired algorithm for global optimization. There are some open research questions that need to be addressed for BBO. In this paper, we extend the original BBO and present a real-coded BBO approach, referred to as RCBBO, for the global optimization problems in the continuous domain. Furthermore, in order to improve the diversity of the population and enhance the exploration ability of RCBBO, the mutation operator is integrated into RCBBO. Experiments have been conducted on 23 benchmark problems of a wide range of dimensions and diverse complexities. The results indicate the good performance of the proposed RCBBO method. Moreover, experimental results also show that the mutation operator can improve the performance of RCBBO effectively.  相似文献   

3.
Recently, a general-purpose local-search heuristic method called extremal optimization (EO) has been successfully applied to some NP-hard combinatorial optimization problems. This paper presents an investigation on EO with its application in numerical multiobjective optimization and proposes a new novel elitist (1 + λ) multiobjective algorithm, called multiobjective extremal optimization (MOEO). In order to extend EO to solve the multiobjective optimization problems, the Pareto dominance strategy is introduced to the fitness assignment of the proposed approach. We also present a new hybrid mutation operator that enhances the exploratory capabilities of our algorithm. The proposed approach is validated using five popular benchmark functions. The simulation results indicate that the proposed approach is highly competitive with the state-of-the-art multiobjective evolutionary algorithms. Thus MOEO can be considered a good alternative to solve numerical multiobjective optimization problems.  相似文献   

4.
《Applied Mathematical Modelling》2014,38(9-10):2454-2462
Krill herd (KH) is a novel search heuristic method. To improve its performance, a biogeography-based krill herd (BBKH) algorithm is presented for solving complex optimization tasks. The improvement involves introducing a new krill migration (KM) operator when the krill updating to deal with optimization problems more efficiently. The KM operator emphasizes the exploitation and lets the krill cluster around the best solutions at the later run phase of the search. The effects of these enhancements are tested by various well-defined benchmark functions. Based on the experimental results, this novel BBKH approach performs better than the basic KH and other optimization algorithms.  相似文献   

5.
To solve complicated function optimization problems, a function optimization algorithm is constructed based on the Susceptible–Infective–Susceptible (SIS) epidemic model, the function optimization algorithm is called SIS algorithm, or SISA in short. The algorithm supposes that some male and female organisms exist in an ecosystem; each individual is characterized by a number of features; an infectious disease exists in the ecosystem and infects among individuals, the infection rule is that female individuals infect male individuals or male individuals infect female individuals, the disease attacks a part of features of an individual. The infected individuals can be cured; the cured individuals can be infected again after a period of time. The physique strength of an individual is decided synthetically by the infection, cure and susceptibility of certain features. The S–I operator is used to transfer feature information from male to female or female to male, the I–S operator is used to transfer feature information from male to male or female to female, the I–S operator and S–S operator are used to transfer feature information among individuals without sex difference. The individuals with strong physique can continue to grow, while the individuals with weak physique stop growing. Results show that the algorithm has characteristics of global convergence and high convergence speed for the complicated functions optimization problems, especially for high dimensional function optimization problems.  相似文献   

6.
Over the last few decades several methods have been proposed for handling functional constraints while solving optimization problems using evolutionary algorithms (EAs). However, the presence of equality constraints makes the feasible space very small compared to the entire search space. As a consequence, the handling of equality constraints has long been a difficult issue for evolutionary optimization methods. This paper presents a Hybrid Evolutionary Algorithm (HEA) for solving optimization problems with both equality and inequality constraints. In HEA, we propose a new local search technique with special emphasis on equality constraints. The basic concept of the new technique is to reach a point on the equality constraint from the current position of an individual solution, and then explore on the constraint landscape. We believe this new concept will influence the future research direction for constrained optimization using population based algorithms. The proposed algorithm is tested on a set of standard benchmark problems. The results show that the proposed technique works very well on those benchmark problems.  相似文献   

7.
This article uses the grey prediction theory to structure a new metaheuristic: grey prediction evolution algorithm based on the even grey model. The proposed algorithm considers the population series of evolutionary algorithms as a time series, and uses the even grey model as a reproduction operator to forecast the next population (without employing any mutation and crossover operators). It is theoretically proven that the reproduction operator based on the even grey model is adaptive. Additionally, the algorithmic search mechanism and its differences with other evolutionary algorithms are analyzed. The performance of the proposed algorithm is validated on CEC2005 benchmark functions and a test suite composed of six engineering constrained design problems. The comparison experiments show the effectiveness and superiority of the proposed algorithm.The proposed algorithm can be regarded as the first case of structuring metaheuristics by using the prediction theory. The novel algorithm is anticipated to influence two future works. The first is to propose more metaheuristics inspired by prediction theories (including some statistical algorithms). Another is that the theoretical results of these prediction systems can be used for this novel type of metaheuristics.  相似文献   

8.
典型的进化策略受自然进化过程的启发而成为求解全局优化问题的重要方法。传统的ES变异算子作为一个主要的进化技术是建立在正态分布的随机变量基础上的,本文提出了基于指数分布的进化策略由于采用了新的变异算子有效地减少了产生探试解的成本,从而优于传统的进化策略。  相似文献   

9.
Inspired by the migratory behavior in the nature, a novel particle swarm optimization algorithm based on particle migration (MPSO) is proposed in this work. In this new algorithm, the population is randomly partitioned into several sub-swarms, each of which is made to evolve based on particle swarm optimization with time varying inertia weight and acceleration coefficients (LPSO-TVAC). At periodic stage in the evolution, some particles migrate from one complex to another to enhance the diversity of the population and avoid premature convergence. It further improves the ability of exploration and exploitation. Simulations for benchmark test functions illustrate that the proposed algorithm possesses better ability to find the global optima than other variants and is an effective global optimization tool.  相似文献   

10.
Multiagent systems have been studied and widely used in the field of artificial intelligence and computer science to catalyze computation intelligence. In this paper, a multiagent evolutionary algorithm called RAER based on the ERA multiagent modeling pattern is proposed, where ERA has the same architecture as Swarm including three parts of Environment, Reactive rules and Agents. RAER integrates a novel roulette inversion operator (RIO) proposed in this paper and theoretically proved to conquer the irrationality of the inversion operator (IO) designed by John Holland when used for real code stochastic optimization algorithms. Experiments for numerical optimization of 4 benchmark functions show that the RIO operator bears better functioning than IO operator. And experiments for numerical optimization of 12 benchmark functions are used to examine the performance and scalability of RAER along the problem dimensions ranging 20-10 000, results indicate that RAER outperforms other comparative algorithms significantly. Also, two engineering optimization problems of a stable linear system approximation and a welded beam design are used to examine the applicability of RAER. Results show that RAER has better search ability and faster convergence speed. Especially for the approximation problem, REAR can find the proper optima belonging to different fixed search areas, which is significantly better than other algorithms and shows that RAER can search the problem domains more thoroughly than other algorithms. Hence, RAER is efficient and practical.  相似文献   

11.
An adaptive decision maker (ADM) is proposed for constrained evolutionary optimization. This decision maker, which is designed in the form of an adaptive penalty function, is used to decide which solution candidate prevails in the Pareto optimal set and to choose the individuals to be replaced. By integrating the ADM with a model of a population-based algorithm-generator, a novel generic constrained optimization evolutionary algorithm is derived. The performance of the new method is evaluated by 13 well-known benchmark test functions. It is shown that the ADM has powerful ability to balance the objective function and the constraint violations, and the results obtained are very competitive to other state-of-the-art techniques referred to in this paper in terms of the quality of the resulting solutions.  相似文献   

12.
In this paper, a real coded genetic algorithm named MI-LXPM is proposed for solving integer and mixed integer constrained optimization problems. The proposed algorithm is a suitably modified and extended version of the real coded genetic algorithm, LXPM, of Deep and Thakur [K. Deep, M. Thakur, A new crossover operator for real coded genetic algorithms, Applied Mathematics and Computation 188 (2007) 895-912; K. Deep, M. Thakur, A new mutation operator for real coded genetic algorithms, Applied Mathematics and Computation 193 (2007) 211-230]. The algorithm incorporates a special truncation procedure to handle integer restrictions on decision variables along with a parameter free penalty approach for handling constraints. Performance of the algorithm is tested on a set of twenty test problems selected from different sources in literature, and compared with the performance of an earlier application of genetic algorithm and also with random search based algorithm, RST2ANU, incorporating annealing concept. The proposed MI-LXPM outperforms both the algorithms in most of the cases which are considered.  相似文献   

13.
When solving multi-objective optimization problems (MOPs) with big data, traditional multi-objective evolutionary algorithms (MOEAs) meet challenges because they demand high computational costs that cannot satisfy the demands of online data processing involving optimization. The gradient heuristic optimization methods show great potential in solving large scale numerical optimization problems with acceptable computational costs. However, some intrinsic limitations make them unsuitable for searching for the Pareto fronts. It is believed that the combination of these two types of methods can deal with big MOPs with less computational cost. The main contribution of this paper is that a multi-objective memetic algorithm based on decomposition for big optimization problems (MOMA/D-BigOpt) is proposed and a gradient-based local search operator is embedded in MOMA/D-BigOpt. In the experiments, MOMA/D-BigOpt is tested on the multi-objective big optimization problems with thousands of variables. We also combine the local search operator with other widely used MOEAs to verify its effectiveness. The experimental results show that the proposed algorithm outperforms MOEAs without the gradient heuristic local search operator.  相似文献   

14.
Particle swarm optimization (PSO) is an evolutionary algorithm used extensively. This paper presented a new particle swarm optimizer based on evolutionary game (EGPSO). We map particles’ finding optimal solution in PSO algorithm to players’ pursuing maximum utility by choosing strategies in evolutionary games, using replicator dynamics to model the behavior of particles. And in order to overcome premature convergence a multi-start technique was introduced. Experimental results show that EGPSO can overcome premature convergence and has great performance of convergence property over traditional PSO.  相似文献   

15.
This paper studies the optimization model of a linear objective function subject to a system of fuzzy relation inequalities (FRI) with the max-Einstein composition operator. If its feasible domain is non-empty, then we show that its feasible solution set is completely determined by a maximum solution and a finite number of minimal solutions. Also, an efficient algorithm is proposed to solve the model based on the structure of FRI path, the concept of partial solution, and the branch-and-bound approach. The algorithm finds an optimal solution of the model without explicitly generating all the minimal solutions. Some sufficient conditions are given that under them, some of the optimal components of the model are directly determined. Some procedures are presented to reduce the search domain of an optimal solution of the original problem based on the conditions. Then the reduced domain is decomposed (if possible) into several sub-domains with smaller dimensions that finding the components of the optimal solution in each sub-domain is very easy. In order to obtain an optimal solution of the original problem, we propose another more efficient algorithm which combines the first algorithm, these procedures, and the decomposition method. Furthermore, sufficient conditions are suggested that under them, the problem has a unique optimal solution. Also, a comparison between the recently proposed algorithm and the known ones will be made.  相似文献   

16.
This paper deals with multi-objective optimization in the case of expensive objective functions. Such a problem arises frequently in engineering applications where the main purpose is to find a set of optimal solutions in a limited global processing time. Several algorithms use linearly combined criteria to use directly mono-objective algorithms. Nevertheless, other algorithms, such as multi-objective evolutionary algorithm (MOEA) and model-based algorithms, propose a strategy based on Pareto dominance to optimize efficiently all criteria. A widely used model-based algorithm for multi-objective optimization is Pareto efficient global optimization (ParEGO). It combines linearly the objective functions with several random weights and maximizes the expected improvement (EI) criterion. However, this algorithm tends to favor parameter values suitable for the reduction of the surrogate model error, rather than finding non-dominated solutions. The contribution of this article is to propose an extension of the ParEGO algorithm for finding the Pareto Front by introducing a double Kriging strategy. Such an innovation allows to calculate a modified EI criterion that jointly accounts for the objective function approximation error and the probability to find Pareto Set solutions. The main feature of the resulting algorithm is to enhance the convergence speed and thus to reduce the total number of function evaluations. This new algorithm is compared against ParEGO and several MOEA algorithms on a standard benchmark problems. Finally, an automotive engineering problem allowing to illustrate the applicability of the proposed approach is given as an example of a real application: the parameter setting of an indirect tire pressure monitoring system.  相似文献   

17.
Statistical transition probability matrices (TPMs), which indicate the likelihood of obligor credit state migration over a certain time horizon, have been used in various credit decision-making applications. A standard approach of calculating TPMs is to form a one-year empirical TPM and then project it into the future based on Markovian and time-homogeneity assumptions. However, the one-year empirical TPM calculated from historical data generally does not satisfy desired properties. We propose an alternative methodology by formulating the problem as a constrained optimization problem requiring satisfaction of all the desired properties and minimization of the discrepancy between predicted multi-year TPMs and empirical evidence. The problem is high-dimensional, non-convex, and non-separable, and is not effectively solved by nonlinear programming methods. To address the difficulty, we investigated evolutionary algorithms (EAs) and problem representation schemas. A self-adaptive differential evolution algorithm JADE, together with a new representation schema that automates constraint satisfaction, is shown to be the most effective technique.  相似文献   

18.
Differential evolution is a novel evolutionary approach capable of handling non-differentiable, nonlinear and multimodal objective functions. It has been consistently ranked as one of the best search algorithm for solving global optimization problems in several case studies. In the present study we propose five new mutation schemes for the basic DE algorithm. The corresponding versions are termed as MDE1, MDE2, MDE3, MDE4 and MDE5. These new schemes make use of the absolute weighted difference between the two points and instead of using a fixed scaling factor F, use a scaling factor following the Laplace distribution. The performance of the proposed schemes is validated empirically on a suit of ten benchmark problems having box constraints. Numerical analysis of results shows that the proposed schemes improves the convergence rate of the DE algorithm and also maintains the quality of solution. Efficiency of the proposed schemes is further validated by applying it to a real life electrical engineering problem dealing with the optimization of directional over-current relay settings. It is a highly constrained nonlinear optimization problem. A constraint handling mechanism based on repair methods is used for handling the constraints. Once again the simulation results show the compatibility of the proposed schemes for solving the real life problem.  相似文献   

19.
Balanced fuzzy particle swarm optimization   总被引:1,自引:0,他引:1  
In the present study an extension of particle swarm optimization (PSO) algorithm which is in conformity with actual nature is introduced for solving combinatorial optimization problems. Development of this algorithm is essentially based on balanced fuzzy sets theory. The classical fuzzy sets theory cannot distinguish differences between positive and negative information of membership functions, while in the new method both kinds of information “positive and negative” about membership function are equally important. The balanced fuzzy particle swarm optimization algorithm is used for fundamental optimization problem entitled traveling salesman problem (TSP). For convergence inspecting of new algorithm, method was used for TSP problems. Convergence curves were represented fast convergence in restricted and low iterations for balanced fuzzy particle swarm optimization algorithm (BF-PSO) comparison with fuzzy particle swarm optimization algorithm (F-PSO).  相似文献   

20.
Designing different estimation of distribution algorithms for continuous optimization is a recent emerging focus in the evolutionary computation field. This paper proposes an improved population-based incremental learning algorithm using histogram probabilistic model for continuous optimization. Histogram models are advantageous in describing the solution distribution of complex and multimodal continuous problems. The algorithm utilizes the sub-dividing strategy to guarantee the accuracy of optimal solutions. Experimental results show that the proposed algorithm is effective and it obtains better performance than the fast evolutionary programming (FEP) and those newly published EDAs in most test functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号