首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Conjugate Gradient (CG) method and the Conjugate Residual (CR) method are Krylov subspace methods for solving symmetric (positive definite) linear systems. To solve nonsymmetric linear systems, the Bi-Conjugate Gradient (Bi-CG) method has been proposed as an extension of CG. Bi-CG has attractive short-term recurrences, and it is the basis for the successful variants such as Bi-CGSTAB. In this paper, we extend CR to nonsymmetric linear systems with the aim of finding an alternative basic solver. Numerical experiments show that the resulting algorithm with short-term recurrences often gives smoother convergence behavior than Bi-CG. Hence, it may take the place of Bi-CG for the successful variants.  相似文献   

2.
This paper is concerned with the (preconditioned) conjugate gradient method for solving systems of linear algebraic equationsAx=b withA having Red/Black form. The connections between the Conjugate Gradient (CG) scheme applied toAx=b and its two reduced systems are explored under certain conditions.  相似文献   

3.
The Conjugate Orthogonal Conjugate Gradient (COCG) method has been recognized as an attractive Lanczos-type Krylov subspace method for solving complex symmetric linear systems; however, it sometimes shows irregular convergence behavior in practical applications. In the present paper, we propose a Conjugate AA-Orthogonal Conjugate Residual (COCR) method, which can be regarded as an extension of the Conjugate Residual (CR) method. Numerical examples show that COCR often gives smoother convergence behavior than COCG.  相似文献   

4.
In this paper, we present a new conjugate gradient (CG) based algorithm in the class of planar conjugate gradient methods. These methods aim at solving systems of linear equations whose coefficient matrix is indefinite and nonsingular. This is the case where the application of the standard CG algorithm by Hestenes and Stiefel (Ref. 1) may fail, due to a possible division by zero. We give a complete proof of global convergence for a new planar method endowed with a general structure; furthermore, we describe some important features of our planar algorithm, which will be used within the optimization framework of the companion paper (Part 2, Ref. 2). Here, preliminary numerical results are reported.This work was supported by MIUR, FIRB Research Program on Large-Scale Nonlinear Optimization, Rome, ItalyThe author acknowledges Luigi Grippo and Stefano Lucidi, who contributed considerably to the elaboration of this paper. The exchange of experiences with Massimo Roma was a constant help in the investigation. The author expresses his gratitude to the Associate Editor and the referees for suggestions and corrections.  相似文献   

5.
The paper considers the problem of constructing a basic iterative scheme for solving systems of linear algebraic equations with unsymmetric and indefinite coefficient matrices. A new GMRES-type algorithm with explicit restarts is suggested. When restarting, this algorithm takes into account the spectral/singular data transferred using orthogonal matrix relations in the so-called QR form, which arise when performing inner iterations of Arnoldi type. The main idea of the algorithm developed is to organize inner iterations and the filtering of directions before restarting in such a way that, from one restart to another, matrix relations effectively accumulate information concerning the current approximate solution and, simultaneously, spectral/singular data, which allow the algorithm to converge with a rate comparable with that of the GMRES algorithm without restarts. Convergence theory is provided for the case of nonsingular, unsymmetric, and indefinite matrices. A bound for the rate of decrease of the residual in the course of inner Arnoldi-type iterations is obtained. This bound depends on the spectral/singular characterization of the subspace spanned by the directions retained upon filtering and is used in developing efficient filtering procedures. Numerical results are provided. Bibliography: 9 titles.  相似文献   

6.
Norm-minimizing-type methods for solving large sparse linear systems with symmetric and indefinite coefficient matrices are considered. The Krylov subspace can be generated by either the Lanczos approach, such as the methods MINRES, GMRES and QMR, or by a conjugate-gradient approach. Here, we propose an algorithm based on the latter approach. Some relations among the search directions and the residuals, and how the search directions are related to the Krylov subspace are investigated. Numerical experiments are reported to verify the convergence properties.  相似文献   

7.
The behavior of ChebFilterCG (an algorithm that combines the Chebyshev filter and Conjugate Gradient) applied to systems with unfavorable eigenvalue distribution is examined. To improve the convergence, a hybrid approach combining a stabilized version of the block conjugated gradient with Chebyshev polynomials as preconditioners (ChebStaBlkCG) is proposed. The performance of ChebStaBlkCG is illustrated and validated on a set of linear systems. It is shown how ChebStaBlkCG can be used to accelerate the block Cimmino method and to solve linear systems with multiple right‐hand sides.  相似文献   

8.
Conjugate gradient optimization algorithms depend on the search directions with different choices for the parameter in the search directions. In this note, conditions are given on the parameter in the conjugate gradient directions to ensure the descent property of the search directions. Global convergence of such a class of methods is discussed. It is shown that, using reverse modulus of continuity function and forcing function, the new method for solving unconstrained optimization can work for a continuously differentiable function with a modification of the Curry-Altman‘s step-size rule and a bounded level set. Combining PR method with our new method, PR method is modified to have global convergence property.Numerical experiments show that the new methods are efficient by comparing with FR conjugate gradient method.  相似文献   

9.
For large systems of linear equations, iterative methods provide attractive solution techniques. We describe the applicability and convergence of iterative methods of Krylov subspace type for an important class of symmetric and indefinite matrix problems, namely augmented (or KKT) systems. Specifically, we consider preconditioned minimum residual methods and discuss indefinite versus positive definite preconditioning. For a natural choice of starting vector we prove that when the definite and indenfinite preconditioners are related in the obvious way, MINRES (which is applicable in the case of positive definite preconditioning) and full GMRES (which is applicable in the case of indefinite preconditioning) give residual vectors with identical Euclidean norm at each iteration. Moreover, we show that the convergence of both methods is related to a system of normal equations for which the LSQR algorithm can be employed. As a side result, we give a rare example of a non-trivial normal(1) matrix where the corresponding inner product is explicitly known: a conjugate gradient method therefore exists and can be employed in this case. This work was supported by British Council/German Academic Exchange Service Research Collaboration Project 465 and NATO Collaborative Research Grant CRG 960782  相似文献   

10.
Semi-Conjugate Direction Methods for Real Positive Definite Systems   总被引:1,自引:0,他引:1  
In this preliminary work, left and right conjugate direction vectors are defined for nonsymmetric, nonsingular matrices A and some properties of these vectors are studied. A left conjugate direction (LCD) method for solving nonsymmetric systems of linear equations is proposed. The method has no breakdown for real positive definite systems. The method reduces to the usual conjugate gradient method when A is symmetric positive definite. A finite termination property of the semi-conjugate direction method is shown, providing a new simple proof of the finite termination property of conjugate gradient methods. The new method is well defined for all nonsingular M-matrices. Some techniques for overcoming breakdown are suggested for general nonsymmetric A. The connection between the semi-conjugate direction method and LU decomposition is established. The semi-conjugate direction method is successfully applied to solve some sample linear systems arising from linear partial differential equations, with attractive convergence rates. Some numerical experiments show the benefits of this method in comparison to well-known methods. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
In this paper, we are interested in solving the stationary probability distributions of Markovian queuing systems having batch arrivals and negative customers by using the Preconditioned Conjugate Gradient Squared (PCGS) method. The preconditioner is constructed by exploiting the near-Toeplitz structure of the generator matrix of the system. We proved that under some mild conditions the preconditioned linear systems have singular values clustered around one when the size of the queue tends to infinity. Numerical results indicated that the convergence rate of the proposed method is very fast.  相似文献   

12.
An improvement on a generalized preconditioned Hermitian and skew-Hermitian splitting method (GPHSS), originally presented by Pan and Wang (J. Numer. Methods Comput. Appl. 32, 174–182, 2011), for saddle point problems, is proposed in this paper and referred to as IGPHSS for simplicity. After adding a matrix to the coefficient matrix on two sides of first equation of the GPHSS iterative scheme, both the number of required iterations for convergence and the computational time are significantly decreased. The convergence analysis is provided here. As saddle point problems are indefinite systems, the Conjugate Gradient method is unsuitable for them. The IGPHSS is compared with Gauss-Seidel, which requires partial pivoting due to some zero diagonal entries, Uzawa and GPHSS methods. The numerical experiments show that the IGPHSS method is better than the original GPHSS and the other two relevant methods.  相似文献   

13.
Summary. The Generalized Conjugate Gradient method (see [1]) is an iterative method for nonsymmetric linear systems. We obtain generalizations of this method for nonlinear systems with nonsymmetric Jacobians. We prove global convergence results. Received April 29, 1992 / Revised version received November 18, 1993  相似文献   

14.
In this paper, we describe an application of the planar conjugate gradient method introduced in Part 1 (Ref. 1) and aimed at solving indefinite nonsingular sets of linear equations. We prove that it can be used fruitfully within optimization frameworks; in particular, we present a globally convergent truncated Newton scheme, which uses the above planar method for solving the Newton equation. Finally, our approach is tested over several problems from the CUTE collection (Ref. 2).This work was supported by MIUR, FIRB Research Program on Large-Scale Nonlinear Optimization, Rome, Italy.The author acknowledges Luigi Grippo and Stefano Lucidi, who contributed considerably to the elaboration of this paper. The exchange of experiences with Massimo Roma was a constant help in the investigation. The author expresses his gratitude to the Associate Editor and the referees for suggestions and corrections.  相似文献   

15.
Parallel preconditioned conjugate gradient algorithm on GPU   总被引:1,自引:0,他引:1  
We propose a parallel implementation of the Preconditioned Conjugate Gradient algorithm on a GPU platform. The preconditioning matrix is an approximate inverse derived from the SSOR preconditioner. Used through sparse matrix–vector multiplication, the proposed preconditioner is well suited for the massively parallel GPU architecture. As compared to CPU implementation of the conjugate gradient algorithm, our GPU preconditioned conjugate gradient implementation is up to 10 times faster (8 times faster at worst).  相似文献   

16.
孙清滢 《数学季刊》2003,18(2):154-162
Conjugate gradient optimization algorithms depend on the search directions.with different choices for the parameters in the search directions.In this note,by combining the nice numerical performance of PR and HS methods with the global convergence property of the class of conjugate gradient methods presented by HU and STOREY(1991),a class of new restarting conjugate gradient methods is presented.Global convergences of the new method with two kinds of common line searches,are proved .Firstly,it is shown that,using reverse modulus of continuity funciton and forcing function,the new method for solving unconstrained optimization can work for a continously differentiable function with Curry-Altman‘s step size rule and a bounded level set .Secondly,by using comparing technique,some general convergence propecties of the new method with other kind of step size rule are established,Numerical experiments show that the new method is efficient by comparing with FR conjugate gradient method.  相似文献   

17.
In this paper we deal with the iterative computation of negative curvature directions of an objective function, within large scale optimization frameworks. In particular, suitable directions of negative curvature of the objective function represent an essential tool, to guarantee convergence to second order critical points. However, an “adequate” negative curvature direction is often required to have a good resemblance to an eigenvector corresponding to the smallest eigenvalue of the Hessian matrix. Thus, its computation may be a very difficult task on large scale problems. Several strategies proposed in literature compute such a direction relying on matrix factorizations, so that they may be inefficient or even impracticable in a large scale setting. On the other hand, the iterative methods proposed either need to store a large matrix, or they need to rerun the recurrence. On this guideline, in this paper we propose the use of an iterative method, based on a planar Conjugate Gradient scheme. Under mild assumptions, we provide theory for using the latter method to compute adequate negative curvature directions, within optimization frameworks. In our proposal any matrix storage is avoided, along with any additional rerun.  相似文献   

18.
Conjugate gradient methods are interesting iterative methods that solve large scale unconstrained optimization problems. A lot of recent research has thus focussed on developing a number of conjugate gradient methods that are more effective. In this paper, we propose another hybrid conjugate gradient method as a linear combination of Dai-Yuan (DY) method and the Hestenes-Stiefel (HS) method. The sufficient descent condition and the global convergence of this method are established using the generalized Wolfe line search conditions. Compared to the other conjugate gradient methods, the proposed method gives good numerical results and is effective.  相似文献   

19.
Conjugate gradient type methods are discussed for unsymmetric and inconsistent system of equations. For unsymmetric problems, besides conjugate gradient methods based on the normal equations, we also present a (modified) minimal residual (least square) method, which converges for systems with matrices that have a positive definite symmetric part. For inconsistent problems, for completeness we discuss briefly various (well-known) versions of the conjugate gradient method. Preconditioning and rate of convergence are also discussed.  相似文献   

20.
The approximate solutions in standard iteration methods for linear systems Ax=b, with A an n by n nonsingular matrix, form a subspace. In this subspace, one may try to construct better approximations for the solution x. This is the idea behind Krylov subspace methods. It has led to very powerful and efficient methods such as conjugate gradients, GMRES, and Bi-CGSTAB. We will give an overview of these methods and we will discuss some relevant properties from the user's perspective view.The convergence of Krylov subspace methods depends strongly on the eigenvalue distribution of A, and on the angles between eigenvectors of A. Preconditioning is a popular technique to obtain a better behaved linear system. We will briefly discuss some modern developments in preconditioning, in particular parallel preconditioners will be highlighted: reordering techniques for incomplete decompositions, domain decomposition approaches, and sparsified Schur complements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号