首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We study a selective and periodic inventory routing problem (SPIRP) and develop an Adaptive Large Neighborhood Search (ALNS) algorithm for its solution. The problem concerns a biodiesel production facility collecting used vegetable oil from sources, such as restaurants, catering companies and hotels that produce waste vegetable oil in considerable amounts. The facility reuses the collected waste oil as raw material to produce biodiesel. It has to meet certain raw material requirements either from daily collection, or from its inventory, or by purchasing virgin oil. SPIRP involves decisions about which of the present source nodes to include in the collection program, and which periodic (weekly) routing schedule to repeat over an infinite planning horizon. The objective is to minimize the total collection, inventory and purchasing costs while meeting the raw material requirements and operational constraints. A single-commodity flow-based mixed integer linear programming (MILP) model was proposed for this problem in an earlier study. The model was solved with 25 source nodes on a 7-day cyclic planning horizon. In order to tackle larger instances, we develop an ALNS algorithm that is based on a rich neighborhood structure with 11 distinct moves tailored to this problem. We demonstrate the performance of the ALNS, and compare it with the MILP model on test instances containing up to 100 source nodes.  相似文献   

2.
This paper considers a real world waste collection problem in which glass, metal, plastics, or paper is brought to certain waste collection points by the citizens of a certain region. The collection of this waste from the collection points is therefore a node routing problem. The waste is delivered to special sites, so called intermediate facilities (IF), that are typically not identical with the vehicle depot. Since most waste collection points need not be visited every day, a planning period of several days has to be considered. In this context three related planning problems are considered. First, the periodic vehicle routing problem with intermediate facilities (PVRP-IF) is considered and an exact problem formulation is proposed. A set of benchmark instances is developed and an efficient hybrid solution method based on variable neighborhood search and dynamic programming is presented. Second, in a real world application the PVRP-IF is modified by permitting the return of partly loaded vehicles to the depots and by considering capacity limits at the IF. An average improvement of 25% in the routing cost is obtained compared to the current solution. Finally, a different but related problem, the so called multi-depot vehicle routing problem with inter-depot routes (MDVRPI) is considered. In this problem class just a single day is considered and the depots can act as an intermediate facility only at the end of a tour. For this problem several instances and benchmark solutions are available. It is shown that the algorithm outperforms all previously published metaheuristics for this problem class and finds the best solutions for all available benchmark instances.  相似文献   

3.
We study a capacitated periodic inventory review problem in which the optimal control of both raw materials and finished product inventories simultaneously involves optimal decisions on materials purchasing from suppliers, buying or selling of materials in spot market, and production quantity in each period. We found that the dynamic program model of the problem is decomposable, and there is an independent relationship between the decisions on materials purchasing/selling and finished product production. Optimal policies are characterized and extensions are discussed.  相似文献   

4.
This paper addresses the problem of finding an effective distribution plan to deliver free newspapers from a production plant to subway, bus, or tram stations. The overall goal is to combine two factors: first, the free newspaper producing company wants to minimize the number of vehicle trips needed to distribute all newspapers produced at the production plant. Second, the company is interested in minimizing the time needed to consume all newspapers, i.e., the time needed to get all the newspapers taken by the final readers. The resulting routing problem combines aspects of the vehicle routing problem with time windows, the inventory routing problem, and additional constraints related to the production schedule. We propose a formulation and different heuristic approaches, as well as a hybrid method. Computational tests with real world data show that the hybrid method is the best in various problem settings.  相似文献   

5.
The inherent uncertainty in supply chain systems compels managers to be more perceptive to the stochastic nature of the systems' major parameters, such as suppliers' reliability, retailers' demands, and facility production capacities. To deal with the uncertainty inherent to the parameters of the stochastic supply chain optimization problems and to determine optimal or close to optimal policies, many approximate deterministic equivalent models are proposed. In this paper, we consider the stochastic periodic inventory routing problem modeled as chance‐constrained optimization problem. We then propose a safety stock‐based deterministic optimization model to determine near‐optimal solutions to this chance‐constrained optimization problem. We investigate the issue of adequately setting safety stocks at the supplier's warehouse and at the retailers so that the promised service levels to the retailers are guaranteed, while distribution costs as well as inventory throughout the system are optimized. The proposed deterministic models strive to optimize the safety stock levels in line with the planned service levels at the retailers. Different safety stock models are investigated and analyzed, and the results are illustrated on two comprehensively worked out cases. We conclude this analysis with some insights on how safety stocks are to be determined, allocated, and coordinated in stochastic periodic inventory routing problem. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
With a growing awareness of carbon footprints and their impact on environmental degradation, many firms hope to streamline their reverse logistics (RL) operations involving end-of-use products. However, managing end-of-use products can be extremely challenging due to inherent complexity involved in the collection, sorting, transhipment, and processing of these products. Despite numerous challenges, the efficient handling of these products can be a source of competitive advantages. In this regard, a plastic recycling industry in Southern India is no exception. This industry often copes with the problem of picking up recyclable plastic bottles using private collecting agents, transferring those bottles to the initial collection points (ICPs), and then transhipping and consolidating them at the centralized return centres (CRCs) for final shipments to the processing centres where these bottles were treated for recycling. This problem can be further complicated with the dilemma of finding the most ideal locations of ICPs and CRCs and the optimal routing of vehicles serving ICPs and CRCs such that the total RL cost is minimized. To aid the industry in dealing with such RL problems, we developed a mathematical model and then evaluated the performances of that model with the actual data obtained from a case study of the Indian company. Given a lack of efforts in combining the location-routing problem with the balanced allocation problem in the closed-loop supply chain network, the main contribution of this paper includes the simultaneous consideration of location, allocation, and routing decisions. In addition, this paper is one of the first to consider incentive payments, the quality level of products, and multiple types of products.  相似文献   

7.
An inventory routing problem is a variation of the vehicle routing problem in which inventory and routing decisions are determined simultaneously over a given time horizon. The objective is to minimize the sum of transportation and inventory costs. In this paper, we study a specific inventory routing problem in which goods are perishable (PIRP). We develop a mathematical model for PIRP and exploit its structure to develop a column generation-based solution approach. Cutting planes are added to improve the formulation. We present computational experiments to demonstrate that our methodology is effective, and that the integration of routing and inventory can yield significant cost savings.  相似文献   

8.
This paper studies the stocking/replenishment decisions for inventory systems where the purchasing price of an item decreases overtime. In a periodic review setting with stochastic demands, we model the purchasing prices of successive periods as a stochastic and decreasing sequence. To minimize the expected total discounted costs (purchasing, inventory holding and shortage penalty) for systems with backlogging and lost sales, we derive conditions, regarding the cost parameters, under which myopic stocking policies are optimal.  相似文献   

9.
The purpose of this paper is to study the periodic arc-routing problem when the arcs of a network behave as customers, and sufficient material is delivered so that each achieves its desired inventory level. Therefore, routing and inventory decisions are made simultaneously. Applications include dust suppression in open-pit mines or forest roads and plant watering along sidewalks or street medians. A truck periodically sprays water along the edges of a network. The humidity reaches a desired level and is then consumed over time until water is delivered again. The quantity of water delivered can be fixed or variable; we consider both scenarios and propose a mathematical model for each. Results are reported to validate the model. The contribution of this paper is the first mathematical model that combines inventory and routing decisions in the arc-routing domain.  相似文献   

10.
In planning and managing production systems, manufacturers have two main strategies for responding to uncertainty: they build inventory to hedge against periods in which the production capacity is not sufficient to satisfy demand, or they temporarily increase the production capacity by “purchasing” extra capacity. We consider the problem of minimizing the long-run average cost of holding inventory and/or purchasing extra capacity for a single facility producing a single part-type and assume that the driving uncertainty is demand fluctuation. We show that the optimal production policy is of a hedging point policy type where two hedging levels are associated with each discrete state of the system: a positive hedging level (inventory target) and a negative one (backlog level below which extra capacity should be purchased). We establish some ordering of the hedging levels, derive equations satisfied by the steady-state probability distribution of the inventory/backlog, and give a more detailed analysis of the optimal control policy in a two state (high and low demand rate) model.  相似文献   

11.
Liquefied natural gas (LNG) is natural gas that has been transformed to liquid form for the purpose of transportation, which is mainly done by specially built LNG vessels travelling from the production site to the consumers. We describe a real-life ship routing and scheduling problem from the LNG business, with both inventory and berth capacity constraints at the liquefaction port. We propose a solution method where the routing and scheduling decisions are decomposed. The routing decisions consist of deciding which vessels should service which cargoes and in what sequence. The scheduling decisions are then to decide when to start servicing the cargoes while satisfying inventory and berth capacity constraints. The proposed solution method has been tested on several problem instances based on the real-life problem. The results show that the proposed solution method is well suited to solve this LNG shipping problem.  相似文献   

12.
Inventory management and satisfactory distribution are among the most important issues considered by distribution companies. One of the key objectives is the simultaneous optimization of the inventory costs and distribution expenses, which can be addressed according to the inventory routing problem (IRP). In this study, we present a new transport cost calculation pattern for the IRP based on some real cases. In this pattern, the transportation cost is calculated as a function of the load carried and the distance traveled by the vehicle based on a step cost function. Furthermore, previous methods usually aggregate the inventory and transportation costs to formulate them as a single objective function, but in non-cooperative real-life cases, the inventory-holding costs are paid by retailers whereas the transportation-related costs are paid by the distributor. In this study, we separate these two cost elements and introduce a bi-objective IRP formulation where the first objective is to minimize the inventory-holding cost and the second is minimizing the transportation cost. We also propose an efficient particle representation and employ a multi-objective particle swarm optimization algorithm to generate the non-dominated solutions for the inventory allocation and vehicle routing decisions. Finally, in order to evaluate the performance of the proposed algorithm, the results obtained were compared with those produced using the augmented ε-constraint method, thereby demonstrating the practical utility of the proposed multi-objective model and the proposed solution algorithm.  相似文献   

13.
Industrial hazardous waste management involves the collection, transportation, treatment, recycling and disposal of industrial hazardous materials that pose risk to their surroundings. In this paper, a new multi-objective location-routing model is developed, and implemented in the Marmara region of Turkey. The aim of the model is to help decision makers decide on locations of treatment centers utilizing different technologies, routing different types of industrial hazardous wastes to compatible treatment centers, locations of recycling centers and routing hazardous waste and waste residues to those centers, and locations of disposal centers and routing waste residues there. In the mathematical model, three criteria are considered: minimizing total cost, which includes total transportation cost of hazardous materials and waste residues and fixed cost of establishing treatment, disposal and recycling centers; minimizing total transportation risk related to the population exposure along transportation routes of hazardous materials and waste residues; and minimizing total risk for the population around treatment and disposal centers, also called site risk. A lexicographic weighted Tchebycheff formulation is developed and computed with CPLEX software to find representative efficient solutions to the problem. Data related to the Marmara region is obtained by utilizing Arcview 9.3 GIS software and Marmara region geographical database.  相似文献   

14.
Considering the inherent connection between supplier selection and inventory management in supply chain networks, this article presents a multi-period inventory lot-sizing model for a single product in a serial supply chain, where raw materials are purchased from multiple suppliers at the first stage and external demand occurs at the last stage. The demand is known and may change from period to period. The stages of this production–distribution serial structure correspond to inventory locations. The first two stages stand for storage areas for raw materials and finished products in a manufacturing facility, and the remaining stages symbolize distribution centers or warehouses that take the product closer to customers. The problem is modeled as a time-expanded transshipment network, which is defined by the nodes and arcs that can be reached by feasible material flows. A mixed integer nonlinear programming model is developed to determine an optimal inventory policy that coordinates the transfer of materials between consecutive stages of the supply chain from period to period while properly placing purchasing orders to selected suppliers and satisfying customer demand on time. The proposed model minimizes the total variable cost, including purchasing, production, inventory, and transportation costs. The model can be linearized for certain types of cost structures. In addition, two continuous and concave approximations of the transportation cost function are provided to simplify the model and reduce its computational time.  相似文献   

15.
In this paper, a supply chain management problem from a real case study is modeled and solved. A company in Pakistan wanted to outsource part of its warehousing activity to a third party logistics (3PL) provider. Consequently, the company had to decide on where to rent space in the 3PL warehouses. Knowing that such a strategic decision is affected by tactical and operational decisions, the problem is presented as a facility location problem integrating production, inventory, and distribution decisions. The problem is formulated as a mixed integer linear programming model which minimizes the total cost composed of location, distribution, production, and inventory costs. Several constraints specific to the situation and policy of the company were considered. A thorough analysis was done on the results obtained with respect to formulation efficiency, sensitivity analysis, and distribution of costs. In addition to the solution of the company problem, a set of 1215 problem instances was generated by varying five types of relevant costs in a full factorial manner. The solution of the generated problems always suggests to open in the same two locations and the integrality gaps averaged 0.062 % with a maximum of 0.102 %. On average, the major components of the total cost are production cost (96.6 %), transportation costs (2.7 %), and inventory holding costs (0.38 %). The total warehouse opening cost accounted for less than 0.05 % of the total costs.  相似文献   

16.
A stochastic inventory routing problem (SIRP) is typically the combination of stochastic inventory control problems and NP-hard vehicle routing problems, which determines delivery volumes to the customers that the depot serves in each period, and vehicle routes to deliver the volumes. This paper aims to solve a large scale multi-period SIRP with split delivery (SIRPSD) where a customer??s delivery in each period can be split and satisfied by multiple vehicle routes if necessary. This paper considers SIRPSD under the multi-criteria of the total inventory and transportation costs, and the service levels of customers. The total inventory and transportation cost is considered as the objective of the problem to minimize, while the service levels of the warehouses and the customers are satisfied by some imposed constraints and can be adjusted according to practical requests. In order to tackle the SIRPSD with notorious computational complexity, we first propose an approximate model, which significantly reduces the number of decision variables compared to its corresponding exact model. We then develop a hybrid approach that combines the linearization of nonlinear constraints, the decomposition of the model into sub-models with Lagrangian relaxation, and a partial linearization approach for a sub model. A near optimal solution of the model found by the approach is used to construct a near optimal solution of the SIRPSD. Randomly generated instances of the problem with up to 200 customers and 5 periods and about 400 thousands decision variables where half of them are integer are examined by numerical experiments. Our approach can obtain high quality near optimal solutions within a reasonable amount of computation time on an ordinary PC.  相似文献   

17.
The present study extends a multi-objective mathematical model in the context of industrial hazardous waste management, which covers the integrated decisions of three levels with locating, vehicle routing, and inventory control. Analyzing these decisions simultaneously not only may lead to the most effective structure in the waste management network, but also may reduce the potential risk of managing the hazardous waste. Furthermore, because of the inherent complexity of the waste management system, uncertainty is inevitable and should be acknowledged to guarantee reliability in the decision-making process. From this perspective, the proposed model is novel in the following three aspects: (1) shifting from a deterministic to stochastic environment; (2) considering a multi-period planning horizon; and (3) incorporating the inventory decisions into the problem. The problem is formulated as a multi-objective stochastic Mixed-Integer Nonlinear Programming (MINLP) model, which can be easily converted into a MILP one. In terms of methodological contribution, a new simheuristic approach that is an integration of Non-Dominated Sorting Genetic Algorithm-II (NSGA-II) and Monte Carlo simulation is developed to overcome the stochastic combinatorial optimization problem of this study. Our findings verify the efficiency of the proposed approach as it is able to find a high-quality solution within a relatively reasonable computational time.  相似文献   

18.
In this paper, we present a case study on a tanker assignment and routing problem for petrol products in Hong Kong. A fleet of heterogeneous dangerous goods vehicles has been assigned to deliver several types of petroleum products to petrol stations with different tank capacities. Under the vendor-managed inventory system, the delivery company is responsible for controlling the station's inventory and replenishment. The operational characteristics and challenges such as geographic zoning, size of petrol stations, routing restrictions and so on are unique and have been described in this paper. A decision support system (DSS) combining heuristic clustering and optimal routing is employed to find the optimal fleet assignment and routing. Multiple objectives are considered simultaneously such that the number of tankers used could be minimized, the number of drops in trips is minimized, profit in terms of total products delivered is maximized and utilization of resources is maximized. The case illustrates the benefit and advantages of using the proposed DSS.  相似文献   

19.
The paper examines the inventory routing problem from the perspective of the present value of the cash flow associated with the distribution of a commodity such as propane. We analyze this problem for both deterministic and stochastic customer demands and validate our results on data from a real life distribution operation of propane. The analysis based on the present value of the cash flow indicates that optimization of propane deliveries based on efficiency/cost criteria alone will generate inferior solutions and it would be more advantageous for the company to set deliveries for a large percentage of the customers based on the present value of cash flow. In addition, in the case of stochastic demands, deliveries based on the cash flow consideration will tend to reduce the number of stockouts (i.e. improve both profit and service).  相似文献   

20.
Start-up companies are a vital ingredient in the success of a globalised networked world economy. We believe that such companies are interested in maximising the chance of surviving in the long term. We present a Markov decision model to analyse survival probabilities of start-up manufacturing companies. Our model examines the implications of their operating decisions, in particular how their inventory strategy is influenced by purchasing, shortage, transportation and ordering costs, as well as loans to the firm. It is shown that although the start-up company should be more conservative in its component purchasing strategy than if it were a well-established company it should not be too conservative. Nor is its strategy monotone in the amount of capital available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号