首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We develop an unconditionally stable direct discretization scheme for solving the phase-field crystal equation on surfaces. The surface is discretized by using an unstructured triangular mesh. Gradient, divergence, and Laplacian operators are defined on triangular meshes. The proposed numerical method is second-order accurate in space and time. At each time step, the proposed computational scheme results in linear elliptic equations to be solved, thus it is easy to implement the algorithm. It is proved that the proposed scheme satisfies a discrete energy-dissipation law. Therefore, it is unconditionally stable. A fast and efficient biconjugate gradients stabilized solver is used to solve the resulting discrete system. Numerical experiments are conducted to demonstrate the performance of the proposed algorithm.  相似文献   

2.
A new mathematical model of the modified bi-Helmholtz equation is proposed for the reconstruction of 3D implicit surfaces using the method of fundamental solutions. In the algorithm, we also show how to properly determine the parameter so that the spurious surface can be avoided. The main attraction of the proposed method is its simplicity. Four examples for the surface reconstruction are presented to validate the proposed numerical model.  相似文献   

3.
Surface mapping plays an important role in geometric processing, which induces both area and angular distortions. If the angular distortion is bounded, the mapping is called a quasiconformal mapping (QC-Mapping). Many surface mappings in our physical world are quasiconformal. The angular distortion of a QC mapping can be represented by the Beltrami differentials. According to QC Teichmüller theory, there is a one-to-one correspondence between the set of Beltrami differentials and the set of QC surface mappings under normalization conditions. Therefore, every QC surface mapping can be fully determined by the Beltrami differential and reconstructed by solving the so-called Beltrami equation. In this work, we propose an effective method to solve the Beltrami equation on general Riemann surfaces. The solution is a QC mapping associated with the prescribed Beltrami differential. The main strategy is to define an auxiliary metric (AM) on the domain surface, such that the original QC mapping becomes conformal under the auxiliary metric. The desired QC-mapping can then be obtained by using the conventional conformal mapping method. In this paper, we first formulate a discrete analogue of QC mappings on triangular meshes. Then, we propose an algorithm to compute discrete QC mappings using the discrete Yamabe flow method. To the best of our knowledge, it is the first work to compute the discrete QC mappings for general Riemann surfaces, especially with different topologies. Numerically, the discrete QC mapping converges to the continuous solution as the mesh grid size approaches to 0. We tested our algorithm on surfaces scanned from real life with different topologies. Experimental results demonstrate the generality and accuracy of our auxiliary metric method.  相似文献   

4.
This paper studies a Laplace operator on semi-discrete surfaces. A semi-discrete surface is represented by a mapping into three-dimensional Euclidean space possessing one discrete variable and one continuous variable. It can be seen as a limit case of a quadrilateral mesh, or as a semi-discretization of a smooth surface. Laplace operators on both smooth and discrete surfaces have been an object of interest for a long time, also from the viewpoint of applications. There are a wealth of geometric objects available immediately once a Laplacian is defined, e.g., the mean curvature normal. We define our semi-discrete Laplace operator to be the limit of a discrete Laplacian on a quadrilateral mesh, which converges to the semi-discrete surface. The main result of this paper is that this limit exists under very mild regularity assumptions. Moreover, we show that the semi-discrete Laplace operator inherits several important properties from its discrete counterpart, like symmetry, positive semi-definiteness, and linear precision. We also prove consistency of the semi-discrete Laplacian, meaning that it converges pointwise to the Laplace–Beltrami operator, when the semi-discrete surface converges to a smooth one. This result particularly implies consistency of the corresponding discrete scheme.  相似文献   

5.
We define a discrete Laplace–Beltrami operator for simplicial surfaces (Definition 16). It depends only on the intrinsic geometry of the surface and its edge weights are positive. Our Laplace operator is similar to the well known finite-elements Laplacian (the so called “cotan formula”) except that it is based on the intrinsic Delaunay triangulation of the simplicial surface. This leads to new definitions of discrete harmonic functions, discrete mean curvature, and discrete minimal surfaces. The definition of the discrete Laplace–Beltrami operator depends on the existence and uniqueness of Delaunay tessellations in piecewise flat surfaces. While the existence is known, we prove the uniqueness. Using Rippa’s Theorem we show that, as claimed, Musin’s harmonic index provides an optimality criterion for Delaunay triangulations, and this can be used to prove that the edge flipping algorithm terminates also in the setting of piecewise flat surfaces. Research for this article was supported by the DFG Research Unit 565 “Polyhedral Surfaces” and the DFG Research Center Matheon “Mathematics for key technologies” in Berlin.  相似文献   

6.
Harmonic analysis for resistance forms   总被引:1,自引:0,他引:1  
In this paper, we define the Green functions for a resistance form by using effective resistance and harmonic functions. Then the Green functions and harmonic functions are shown to be uniformly Lipschitz continuous with respect to the resistance metric. Making use of this fact, we construct the Green operator and the (measure valued) Laplacian. The domain of the Laplacian is shown to be a subset of uniformly Lipschitz continuous functions while the domain of the resistance form in general consists of uniformly 1/2-Hölder continuous functions.  相似文献   

7.
We present a simple and fast explicit hybrid numerical scheme for the motion by mean curvature on curved surfaces in three-dimensional (3D) space. We numerically solve the Allen-Cahn (AC) and conservative Allen-Cahn (CAC) equations on a triangular surface mesh. We use the operator splitting method and an explicit hybrid numerical method. For the AC equation, we solve the diffusion term using a discrete Laplace-Beltrami operator on the triangular surface mesh and solve the reaction term using the closed-form solution, which is obtained using the separation of variables. Next, for the CAC equation, we additionally solve the time-space dependent Lagrange multiplier using an explicit scheme. Our numerical scheme is computationally fast and efficient because we use an explicit hybrid numerical scheme. We perform various numerical experiments to demonstrate the robustness and efficiency of the proposed scheme.  相似文献   

8.
The properties of a uniformly permeable surface that models the canopy of a real parachute are presented. A modernization of the discrete vortex method is proposed that makes it possible to apply it to calculate the flow over uniformly permeable surfaces. The results of computations of the aerodynamic characteristics of permeable parachutes are presented and compared with experimental data.Translated fromDinamichekie Sistemy, No. 6, pp.3–10, 1987.  相似文献   

9.
The influences of surface mechanical properties effects on the dynamic characteristics of a circular micro-diaphragm with a partially uniformly distributed mass are investigated. Surface mechanical properties effects on two sides are considered to be different as one side of the diaphragm contacts with biochemical media. A size-dependent analytical model is developed based on the thin plate theory and surface elasticity theory for the micro-diaphragm with a partially uniformly distributed mass. The Galerkin procedure is used to solve the governing equation. The size-dependence of the natural frequency and mass sensitivity of the micro-diaphragm with different surface mechanical properties effects is discussed. Results show that the influences of different surface mechanical properties effects on the natural frequency and mass sensitivity are more significant for thinner micro-diaphragms. The influences depend on the differences in the surface mechanical properties effects of the two surfaces.  相似文献   

10.
本文提出了一种求解复杂边界旋转Navier-Stokes方程的微分几何方法及其二度并行算法.此方法可用于求解透平机械内部叶片间流动和飞行器外部绕流等复杂流动问题.假设流动区域可以用一系列光滑曲面■_k,k=1,2,…,K分割为一系列子区域(称作流层),通过应用微分几何的方法,三维N-S算子可以分解为两类算子之和:建立在曲面■_k切空间上"膜算子"和曲面■_k法线方向的"挠曲算子",将挠曲算子应用欧拉中心差商来逼近,由此得到建立在■_k上的"2D-3C"N-S方程.求解2D-3C N-S方程并且反复迭代直到收敛.我们得到"二度并行算法",它是2D-3C N-S方程并行算法与k方向的同时并行.这个算法的优点在于,(1)可以改进由于复杂边界造成的不规则三维网格引起的逼近解的精度;(2)为克服边界层的数值效应,在边界层内可以构造很密的流层,形成三维多尺度的网格,是一个很好的边界层算法;(3)这个方法不同于经典的区域分解算法,这里的每个子区域只需要求解一个"2D-3C"N-S方程,而经典区域分解方法要在每个子区域上求解三维问题.  相似文献   

11.
本文利用曲面参数化的思想设计了3维关键帧动画中的顶点对应简化算法.在这个基础上,本文把Sederberg关于2维闭曲线帧插值的方法推广到3维闭曲面帧插值,并进行了大量的动画编程实践.试验表明,本文的方法对许多简单曲面都有较好的插值效果.  相似文献   

12.
By using harmonic analysis and representation theory, we determine explicitly the L2 spectrum of the Hodge-de Rham Laplacian acting on quaternionic hyperbolic spaces and we show that the unique possible discrete eigenvalue and the lowest continuous eigenvalue can both be realized by some subspace of hypereffective differential forms. Similar results are obtained also for the Bochner Laplacian.  相似文献   

13.
We present a new scattered data fitting method, where local approximating polynomials are directly extended to smooth (C 1 or C 2) splines on a uniform triangulation Δ (the four-directional mesh). The method is based on designing appropriate minimal determining sets consisting of whole triangles of domain points for a uniformly distributed subset of Δ. This construction allows to use discrete polynomial least squares approximations to the local portions of the data directly as parts of the approximating spline. The remaining Bernstein–Bézier coefficients are efficiently computed by extension, i.e., using the smoothness conditions. To obtain high quality local polynomial approximations even for difficult point constellations (e.g., with voids, clusters, tracks), we adaptively choose the polynomial degrees by controlling the smallest singular value of the local collocation matrices. The computational complexity of the method grows linearly with the number of data points, which facilitates its application to large data sets. Numerical tests involving standard benchmarks as well as real world scattered data sets illustrate the approximation power of the method, its efficiency and ability to produce surfaces of high visual quality, to deal with noisy data, and to be used for surface compression.  相似文献   

14.
一种修正的求总极值的积分—水平集方法的实现算法收敛性   总被引:18,自引:0,他引:18  
1978年,郑权等提出了一个积分型求总极值的概念性算法及Monte-Carlo随机投点的实现算法,给出了概念性算法的总极值存在的充分必要条件,但是其实现算法收敛性仍未解决,1986年,张连生等给出离散均值-水平集的实现算法,并证明了它的收敛性。本文给出修正的积分-水平集方法,用一致分布搂九值积分逼近水平集构造实现算法,并证明了算法的收敛性。  相似文献   

15.
《Mathematische Nachrichten》2017,290(7):1097-1112
We consider a planar Riemann surface R made of a non‐compact simply connected plane domain from which an infinite discrete set of points is removed. We give several conditions for the collars of the cusps in R caused by these points to be uniformly distributed in R in terms of Euclidean geometry. Then we associate a graph G with R by taking the Voronoi diagram for the uniformly distributed cusps and show that G represents certain geometric and analytic properties of R .  相似文献   

16.
We consider a problem of elliptic optimal design. The control is the shape of the domain on which the Dirichlet problem for the Laplace equation is posed. In dimension n=2, S?veràk proved that there exists an optimal domain in the class of all open subsets of a given bounded open set, whose complements have a uniformly bounded number of connected components. The proof (J. Math. Pures Appl. 72 (1993) 537–551) is based on the compactness of this class of domains with respect to the complementary-Hausdorff topology and the continuous dependence of the solutions of the Dirichlet Laplacian in H1 with respect to it. In this Note we consider a finite-element discrete version of this problem and prove that the discrete optimal domains converge in that topology towards the continuous one as the mesh-size tends to zero. The key point of the proof is that finite-element approximations of the solution of the Dirichlet Laplacian converge in H1 whenever the polygonal domains converge in the sense of that topology. To cite this article: D. Chenais, E. Zuazua, C. R. Acad. Sci. Paris, Ser. I 338 (2004).  相似文献   

17.
In this paper we present some theoretical results about the irreducibility of the Laplacian matrix ordered by the Reverse Cuthill-McKee (RCM) algorithm. We consider undirected graphs with no loops consisting of some connected components. RCM is a well-known scheme for numbering the nodes of a network in such a way that the corresponding adjacency matrix has a narrow bandwidth. Inspired by some properties of the eigenvectors of a Laplacian matrix, we derive some properties based on row sums of a Laplacian matrix that was reordered by the RCM algorithm. One of the theoretical results serves as a basis for writing an easy MATLAB code to detect connected components, by using the function “symrcm” of MATLAB. Some examples illustrate the theoretical results.  相似文献   

18.
Surface parameterization is widely used in computer graphics and geometry processing. It simplifies challenging tasks such as surface registrations, morphing, remeshing and texture mapping. In this paper, we present an efficient algorithm for computing the disk conformal parameterization of simply-connected open surfaces. A double covering technique is used to turn a simply-connected open surface into a genus-0 closed surface, and then a fast algorithm for parameterization of genus-0 closed surfaces can be applied. The symmetry of the double covered surface preserves the efficiency of the computation. A planar parameterization can then be obtained with the aid of a Möbius transformation and the stereographic projection. After that, a normalization step is applied to guarantee the circular boundary. Finally, we achieve a bijective disk conformal parameterization by a composition of quasi-conformal mappings. Experimental results demonstrate a significant improvement in the computational time by over 60%. At the same time, our proposed method retains comparable accuracy, bijectivity and robustness when compared with the state-of-the-art approaches. Applications to texture mapping are presented for illustrating the effectiveness of our proposed algorithm.  相似文献   

19.
Circular meshes are quadrilateral meshes all of whose faces possess a circumcircle, whereas conical meshes are planar quadrilateral meshes where the faces which meet in a vertex are tangent to a right circular cone. Both are amenable to geometric modeling – recently surface approximation and subdivision-like refinement processes have been studied. In this paper we extend the original defining property of conical meshes, namely the existence of face/face offset meshes at constant distance, to circular meshes. We study the close relation between circular and conical meshes, their vertex/vertex and face/face offsets, as well as their discrete normals and focal meshes. In particular we show how to construct a two-parameter family of circular (resp., conical) meshes from a given conical (resp., circular) mesh. We further discuss meshes which have both properties and their relation to discrete surfaces of negative Gaussian curvature. The offset properties of special quadrilateral meshes and the three-dimensional support structures derived from them are highly relevant for computational architectural design of freeform structures. Another aspect important for design is that both circular and conical meshes provide a discretization of the principal curvature lines of a smooth surface, so the mesh polylines represent principal features of the surface described by the mesh.   相似文献   

20.
Data-extrapolating (extension) technique has important applications in image processing on implicit surfaces and in level set methods. The existing data-extrapolating techniques are inefficient because they are designed without concerning the specialities of the extrapolating equations. Besides, there exists little work on locating the narrow band after data extrapolating—a very important problem in narrow band level set methods. In this paper, we put forward the general Huygens’ principle, and based on the principle we present two efficient data-extrapolating algorithms. The algorithms can easily locate the narrow band in data extrapolating. Furthermore, we propose a prediction–correction version for the data-extrapolating algorithms and the corresponding band locating method for a special case where the direct band locating method is hard to apply. Experiments demonstrate the efficiency of our algorithms and the convenience of the band locating method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号