首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An efficient linear second order unconditionally stable direct discretization method for the phase-field crystal equation on surfaces
Institution:1. School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, China;2. Department of Mathematics, Korea University, Seoul 02841, Republic of Korea
Abstract:We develop an unconditionally stable direct discretization scheme for solving the phase-field crystal equation on surfaces. The surface is discretized by using an unstructured triangular mesh. Gradient, divergence, and Laplacian operators are defined on triangular meshes. The proposed numerical method is second-order accurate in space and time. At each time step, the proposed computational scheme results in linear elliptic equations to be solved, thus it is easy to implement the algorithm. It is proved that the proposed scheme satisfies a discrete energy-dissipation law. Therefore, it is unconditionally stable. A fast and efficient biconjugate gradients stabilized solver is used to solve the resulting discrete system. Numerical experiments are conducted to demonstrate the performance of the proposed algorithm.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号