首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 592 毫秒
1.
IfG is a finite undirected graph ands is a vertex ofG, then two spanning treesT 1 andT 2 inG are calleds — independent if for each vertexx inG the paths fromx tos inT 1 andT 2 are openly disjoint. It is known that the following statement is true fork3: IfG isk-connected, then there arek pairwises — independent spanning, trees inG. As a main result we show that this statement is also true fork=4 if we restrict ourselves to planar graphs. Moreover we consider similar statements for weaklys — independent spanning trees (i.e., the tree paths from a vertex tos are edge disjoint) and for directed graphs.  相似文献   

2.
We prove the following statement: Let G be a finite k-connected undirected planar graph and s be a vertex of G. Then there exist k spanning trees T1,…,Tk in G such that for each vertex xps of G, the k paths from x to s in T1,…,Tk are pairwise openly disjoint.  相似文献   

3.
In this paper we describe a polynomial-time algorithm for the following problem:given: a planar graphG embedded in ℝ2, a subset {I 1, …,I p} of the faces ofG, and pathsC 1, …,C k inG, with endpoints on the boundary ofI 1 ∪ … ∪I p; find: pairwise disjoint simple pathsP 1, …,P k inG so that, for eachi=1, …,k, P i is homotopic toC i in the space ℝ2\(I 1 ∪ … ∪I p). Moreover, we prove a theorem characterizing the existence of a solution to this problem. Finally, we extend the algorithm to disjoint homotopic trees. As a corollary we derive that, for each fixedp, there exists a polynormial-time algorithm for the problem:given: a planar graphG embedded in ℝ2 and pairwise disjoint setsW 1, …,W k of vertices, which can be covered by the boundaries of at mostp faces ofG;find: pairwise vertex-disjoint subtreesT 1, …,T k ofG whereT i (i=1, …, k).  相似文献   

4.
A graph G is k-linked if G has at least 2k vertices, and for any 2k vertices x 1,x 2, …, x k ,y 1,y 2, …, y k , G contains k pairwise disjoint paths P 1, …, P k such that P i joins x i and y i for i = 1,2, …, k. We say that G is parity-k-linked if G is k-linked and, in addition, the paths P 1, …, P k can be chosen such that the parities of their length are prescribed. Thomassen [22] was the first to prove the existence of a function f(k) such that every f(k)-connected graph is parity-k-linked if the deletion of any 4k-3 vertices leaves a nonbipartite graph. In this paper, we will show that the above statement is still valid for 50k-connected graphs. This is the first result that connectivity which is a linear function of k guarantees the Erdős-Pósa type result for parity-k-linked graphs. Research partly supported by the Japan Society for the Promotion of Science for Young Scientists, by Japan Society for the Promotion of Science, Grant-in-Aid for Scientific Research and by Inoue Research Award for Young Scientists.  相似文献   

5.
As an extension of the disjoint paths problem, we introduce a new problem which we call the induced disjoint paths problem. In this problem we are given a graph G and a collection of vertex pairs {(s1,t1),…,(sk,tk)}. The objective is to find k paths P1,…,Pk such that Pi is a path from si to ti and Pi and Pj have neither common vertices nor adjacent vertices for any distinct i,j.The induced disjoint paths problem has several variants depending on whether k is a fixed constant or a part of the input, whether the graph is directed or undirected, and whether the graph is planar or not. We investigate the computational complexity of several variants of the induced disjoint paths problem. We show that the induced disjoint paths problem is (i) solvable in polynomial time when k is fixed and G is a directed (or undirected) planar graph, (ii) NP-hard when k=2 and G is an acyclic directed graph, (iii) NP-hard when k=2 and G is an undirected general graph.As an application of our first result, we show that we can find in polynomial time certain structures called a “hole” and a “theta” in a planar graph.  相似文献   

6.
The signed distance-k-domination number of a graph is a certain variant of the signed domination number. If v is a vertex of a graph G, the open k-neighborhood of v, denoted by N k (v), is the set N k (v) = {u: uv and d(u, v) ⩽ k}. N k [v] = N k (v) ⋃ {v} is the closed k-neighborhood of v. A function f: V → {−1, 1} is a signed distance-k-dominating function of G, if for every vertex . The signed distance-k-domination number, denoted by γ k,s (G), is the minimum weight of a signed distance-k-dominating function on G. The values of γ 2,s (G) are found for graphs with small diameter, paths, circuits. At the end it is proved that γ 2,s (T) is not bounded from below in general for any tree T.  相似文献   

7.
Degree Sums and Path-Factors in Graphs   总被引:1,自引:0,他引:1  
 Let G be a connected graph of order n and suppose that n=∑ i =1 k n i , where n i ≥2 are integers. In this paper we give some sufficient conditions in terms of degree sums to ensure that G contains a spanning subgraph consisting of vertex disjoint paths of orders n 1,n 2,…,n k . Received: June 30, 1999 Final version received: July 31, 2000  相似文献   

8.
For each k ≥ 3, we construct a finite directed strongly k-connected graph D containing a vertex t with the following property: For any k spanning t-branchings, B1, …, Bk in D (i. e., each Bi is a spanning tree in D directed toward t), there exists a vertex xt of D such that the k, x, t-paths in B1, …, Bk are not pairwise openly disjoint. This disproves a well-known conjecture of Frank. © 1995, John Wiley & Sons, Inc.  相似文献   

9.
For a connected graph G = (V, E), an edge set S ì E{S\subset E} is called a k-restricted edge cut if GS is disconnected and every component of GS contains at least k vertices. The k-restricted edge connectivity of G, denoted by λ k (G), is defined as the cardinality of a minimum k-restricted edge cut. For two disjoint vertex sets U1,U2 ì V(G){U_1,U_2\subset V(G)}, denote the set of edges of G with one end in U 1 and the other in U 2 by [U 1, U 2]. Define xk(G)=min{|[U,V(G)\ U]|: U{\xi_k(G)=\min\{|[U,V(G){\setminus} U]|: U} is a vertex subset of order k of G and the subgraph induced by U is connected}. A graph G is said to be λ k -optimal if λ k (G) = ξ k (G). A graph is said to be super-λ k if every minimum k-restricted edge cut is a set of edges incident to a certain connected subgraph of order k. In this paper, we present some degree-sum conditions for balanced bipartite graphs to be λ k -optimal or super-λ k . Moreover, we demonstrate that our results are best possible.  相似文献   

10.
Diperfect graphs     
Gallai and Milgram have shown that the vertices of a directed graph, with stability number α(G), can be covered by exactly α(G) disjoint paths. However, the various proofs of this result do not imply the existence of a maximum stable setS and of a partition of the vertex-set into paths μ1, μ2, ..., μk such tht |μiS|=1 for alli. Later, Gallai proved that in a directed graph, the maximum number of vertices in a path is at least equal to the chromatic number; here again, we do not know if there exists an optimal coloring (S 1,S 2, ...,S k) and a path μ such that |μ ∩S i|=1 for alli. In this paper we show that many directed graphs, like the perfect graphs, have stronger properties: for every maximal stable setS there exists a partition of the vertex set into paths which meet the stable set in only one point. Also: for every optimal coloring there exists a path which meets each color class in only one point. This suggests several conjecties similar to the perfect graph conjecture. Dedicated to Tibor Gallai on his seventieth birthday  相似文献   

11.
Let p be a prime. We assign to each positive number k a digraph G p k whose set of vertices is {1, 2, …, p − 1} and there exists a directed edge from a vertex a to a vertex b if a k b (mod p). In this paper we obtain a necessary and sufficient condition for Gpk1 @ Gpk2G_p^{{k_1}} \simeq G_p^{{k_2}}.  相似文献   

12.
Letf(X) be an additive form defined by
wherea i ≠0 is integer,i=1,2…,s. In 1979, Schmidt proved that if ∈>0 then there is a large constantC(k,∈) such that fors>C(k,∈) the equationf(X)=0 has a nontrivial, integer solution in σ1, σ2, …, σ3,x 1,x 2, …,x 3 satisfying
Schmidt did not estimate this constantC(k,∈) since it would be extremely large. In this paper, we prove the following result  相似文献   

13.
Let G = (V, E) be an interval graph with n vertices and m edges. A positive integer R(x) is associated with every vertex x ? V{x\in V}. In the conditional covering problem, a vertex x ? V{x \in V} covers a vertex y ? V{y \in V} (xy) if d(x, y) ≤ R(x) where d(x, y) is the shortest distance between the vertices x and y. The conditional covering problem (CCP) finds a minimum cardinality vertex set C í V{C\subseteq V} so as to cover all the vertices of the graph and every vertex in C is also covered by another vertex of C. This problem is NP-complete for general graphs. In this paper, we propose an efficient algorithm to solve the CCP with nonuniform coverage radius in O(n 2) time, when G is an interval graph containing n vertices.  相似文献   

14.
Fix k, d, 1 ≤ kd + 1. Let $ \mathcal{F} $ \mathcal{F} be a nonempty, finite family of closed sets in ℝ d , and let L be a (dk + 1)-dimensional flat in ℝ d . The following results hold for the set T ≡ ∪{F: F in $ \mathcal{F} $ \mathcal{F} }. Assume that, for every k (not necessarily distinct) members F 1, …, F k of $ \mathcal{F} $ \mathcal{F} ,∪{F i : 1 ≤ ik} is starshaped and the corresponding kernel contains a translate of L. Then T is starshaped, and its kernel also contains a translate of L.  相似文献   

15.
For a nontrivial connected graph G, let c: V (G) → ℕ be a vertex coloring of G where adjacent vertices may be colored the same. For a vertex v of G, the neighborhood color set NC(v) is the set of colors of the neighbors of v. The coloring c is called a set coloring if NC(u) ≠ NC(v) for every pair u, v of adjacent vertices of G. The minimum number of colors required of such a coloring is called the set chromatic number x s (G). A study is made of the set chromatic number of the join G+H of two graphs G and H. Sharp lower and upper bounds are established for x s (G + H) in terms of x s (G), x s (H), and the clique numbers ω(G) and ω(H).  相似文献   

16.
Letf(x)=θ1 x 1 k +...+θ s x s k be an additive form with real coefficients, and ∥α∥ = min {|α-u|:uεℤ} denote the distance fromα to the nearest integer. We show that ifθ 1,…,θ s , are algebraic ands = 4k then there are integersx 1,…,x s , satisfying l ≤x 1,≤ N and ∥f(x)∥ ≤ N E , withE = − 1 + 2/e. Whens = λk, 1 ≤λ ≤ 2k, the exponentE may be replaced byλE/4, and if we drop the condition thatθ 1,…,θ s , be algebraic then the result holds for almost all values of θεℝ s . Whenk ≥ 6 is small a better exponent is obtained using Heath-Brown’s version of Weyl’s estimate.  相似文献   

17.
A connected, finite two-dimensional CW-complex with fundamental group isomorphic toG is called a [G, 2] f -complex. LetL⊲G be a normal subgroup ofG. L has weightk if and only ifk is the smallest integer such that there exists {l 1,…,l k}⊆L such thatL is the normal closure inG of {l 1,…,l k}. We prove that a [G, 2] f -complexX may be embedded as a subcomplex of an aspherical complexY=X∪{e 1 2 ,…,e k 2 } if and only ifG has a normal subgroupL of weightk such thatH=G/L is at most two-dimensional and defG=defH+k. Also, ifX is anon-aspherical [G, 2] f -subcomplex of an aspherical 2-complex, then there exists a non-trivial superperfect normal subgroupP such thatG/P has cohomological dimension ≤2. In this case, any torsion inG must be inP.  相似文献   

18.
Arc-disjoint in-trees in directed graphs   总被引:2,自引:0,他引:2  
Given a directed graph D = (V,A) with a set of d specified vertices S = {s 1,…, s d } ⊆ V and a function f: S → ℕ where ℕ denotes the set of natural numbers, we present a necessary and sufficient condition such that there exist Σ i=1 d f(s i ) arc-disjoint in-trees denoted by T i,1,T i,2,…, for every i = 1,…,d such that T i,1,…, are rooted at s i and each T i,j spans the vertices from which s i is reachable. This generalizes the result of Edmonds [2], i.e., the necessary and sufficient condition that for a directed graph D=(V,A) with a specified vertex sV, there are k arc-disjoint in-trees rooted at s each of which spans V. Furthermore, we extend another characterization of packing in-trees of Edmonds [1] to the one in our case. Supported by JSPS Research Fellowships for Young Scientists. Supported by the project New Horizons in Computing, Grand-in-Aid for Scientific Research on Priority Areas, MEXT Japan.  相似文献   

19.
On the adjacent-vertex-strongly-distinguishing total coloring of graphs   总被引:6,自引:0,他引:6  
For any vertex u∈V(G), let T_N(U)={u}∪{uv|uv∈E(G), v∈v(G)}∪{v∈v(G)|uv∈E(G)}and let f be a total k-coloring of G. The total-color neighbor of a vertex u of G is the color set C_f(u)={f(x)|x∈TN(U)}. For any two adjacent vertices x and y of V(G)such that C_f(x)≠C_f(y), we refer to f as a k-avsdt-coloring of G("avsdt"is the abbreviation of"adjacent-vertex-strongly- distinguishing total"). The avsdt-coloring number of G, denoted by X_(ast)(G), is the minimal number of colors required for a avsdt-coloring of G. In this paper, the avsdt-coloring numbers on some familiar graphs are studied, such as paths, cycles, complete graphs, complete bipartite graphs and so on. We proveΔ(G) 1≤X_(ast)(G)≤Δ(G) 2 for any tree or unique cycle graph G.  相似文献   

20.
 The main result of the papzer is that any planar graph with odd girth at least 10k−7 has a homomorphism to the Kneser graph G k 2 k +1, i.e. each vertex can be colored with k colors from the set {1,2,…,2k+1} so that adjacent vertices have no colors in common. Thus, for example, if the odd girth of a planar graph is at least 13, then the graph has a homomorphism to G 2 5, also known as the Petersen graph. Other similar results for planar graphs are also obtained with better bounds and additional restrictions. Received: June 14, 1999 Final version received: July 5, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号