首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we study the numerical approximations of a gradient flow associated with a phase field bending elasticity model of a vesicle membrane with prescribed volume and surface area. A spatially semi‐discrete scheme based on a mixed finite element formulation and a fully discrete in space and time scheme are analyzed. Optimal order error estimates are rigorously derived for these numerical schemes without any a priori assumption. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
张铁  李铮 《计算数学》2012,34(2):215-224
一阶双曲问题的有限元后验误差估计至今没有得到很好的解决.本文对d维区域上一阶双曲问题的k次间断有限元逼近提出了一种新的后验误差分析方法, 进而建立了间断有限元解在DG范数下(强于L2范数)基于误差余量型的后验误差估计. 数值计算验证了本文理论分析的有效性. 本文方法也适用于其他变分问题有限元逼近的后验误差分析.  相似文献   

3.
Summary In this paper we shall consider the application of the finite element method to a class of second order elliptic boundary value problems of divergence form and with gradient nonlinearity in the principal coefficient, and the derivation of error estimates for the finite element approximations. Such problems arise in many practical situations — for example, in shock-free airfoil design, seepage through coarse grained porous media, and in some glaciological problems. By making use of certain properties of the nonlinear coefficients, we shall demonstrate that the variational formulations associated with these boundary value problems are well-posed. We shall also prove that the abstract operators accompanying such problems satisfy certain continuity and monotonicity inequalities. With the aid of these inequalities and some standard results from approximation theory, we show how one may derive error estimates for the finite element approximations in the energy norm.  相似文献   

4.
Summary Asymptotic expansions for mixed finite element approximations of the second order elliptic problem are derived and Richardson extrapolation can be applied to increase the accuracy of the approximations. A new procedure, which is called the error corrected method, is presented as a further application of the asymptotic error expansion for the first order BDM approximation of the scalar field. The key point in deriving the asymptotic expansions for the error is an establishment ofL 1-error estimates for mixed finite element approximations for the regularized Green's functions. As another application of theL 1-error estimates for the regularized Green's functions, we shall present maximum norm error estimates for mixed finite element methods for second order elliptic problems.  相似文献   

5.
In this paper, we provide a theoretical analysis of the partition of unity finite elementmethod (PUFEM), which belongs to the family of meshfree methods. The usual erroranalysis only shows the order of error estimate to the same as the local approximations[12].Using standard linear finite element base functions as partition of unity and polynomials aslocal approximation space, in 1-d case, we derive optimal order error estimates for PUFEMinterpolants. Our analysis show that the error estimate is of one order higher than thelocal approximations. The interpolation error estimates yield optimal error estimates forPUFEM solutions of elliptic boundary value problems.  相似文献   

6.
1. IntroductionThe pmpme of tabs Paper is to show that the ~ardson edrapolation can be used toenhance the nUmerical solutions generated by a cab of Petrov-Gaierkin lhate element methodsfor the nonlinear VOlterra integrO-chrential equation (VIDE):where j = j(t,y): I x R --+ R and k = k(t,8,g): D x R - R (with D:= {(t,8): 0 S & S t ST}) denote given hmctions.Throughout tab paperl it will always be assumed that the problem (1.1) possesses a piquesolution y E C'(I), namely, the given hmc…  相似文献   

7.
The main goal of this paper is to present recovery type a posteriori error estimators and superconvergence for the nonconforming finite element eigenvalue approximation of self-adjoint elliptic equations by projection methods. Based on the superconvergence results of nonconforming finite element for the eigenfunction we derive superconvergence and recovery type a posteriori error estimates of the eigenvalue. The results are based on some regularity assumption for the elliptic problem and are applicable to the lowest order nonconforming finite element approximations of self-adjoint elliptic eigenvalue problems with quasi-regular partitions. Therefore, the results of this paper can be employed to provide useful a posteriori error estimators in practical computing under unstructured meshes.  相似文献   

8.
Luka Grubišić 《PAMM》2006,6(1):59-62
We combine abstract eigenvalue/eigenvector estimates (from our earlier work) with a saturation assumption for finite element solution of associated stationary problem to obtain a posteriori estimates of the accuracy of finite element Rayleigh–Ritz approximations. Attention will be payed to the interplay between the accuracy estimate for the finite element method and a strategy for generating an adapted mesh. The obtained results use a preconditioned residuum of Neymeyr and extend his study of eigenvalue approximations with eigenvector estimates. We also prove that this eigenvalue estimator is equivalent to the global error. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
We consider the time‐dependent magnetic induction model as a step towards the resistive magnetohydrodynamics model in incompressible media. Conforming nodal‐based finite element approximations of the induction model with inf‐sup stable finite elements for the magnetic field and the magnetic pseudo‐pressure are investigated. Based on a residual‐based stabilization technique proposed by Badia and Codina, SIAM J. Numer. Anal. 50 (2012), pp. 398–417, we consider a stabilized nodal‐based finite element method for the numerical solution. Error estimates are given for the semi‐discrete model in space. Finally, we present some examples, for example, for the magnetic flux expulsion problem, Shercliff's test case and singular solutions of the Maxwell problem. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
In this paper, we propose a method to improve the convergence rate of the lowest order Raviart-Thomas mixed finite element approximations for the second order elliptic eigenvalue problem. Here, we prove a supercloseness result for the eigenfunction approximations and use a type of finite element postprocessing operator to construct an auxiliary source problem. Then solving the auxiliary additional source problem on an augmented mixed finite element space constructed by refining the mesh or by using the same mesh but increasing the order of corresponding mixed finite element space, we can increase the convergence order of the eigenpair approximation. This postprocessing method costs less computation than solving the eigenvalue problem on the finer mesh directly. Some numerical results are used to confirm the theoretical analysis.  相似文献   

11.
We develop a new approach to a posteriori error estimation for Galerkin finite element approximations of symmetric and nonsymmetric elliptic eigenvalue problems. The idea is to embed the eigenvalue approximation into the general framework of Galerkin methods for nonlinear variational equations. In this context residual-based a posteriori error representations are available with explicitly given remainder terms. The careful evaluation of these error representations for the concrete situation of an eigenvalue problem results in a posteriori error estimates for the approximations of eigenvalues as well as eigenfunctions. These suggest local error indicators that are used in the mesh refinement process.  相似文献   

12.
In this paper, we investigate the superconvergence property and a posteriori error estimates of mixed finite element methods for a linear elliptic control problem with an integral constraint. The state and co-state are approximated by the order k = 1 Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise constant functions. Approximations of the optimal control of the continuous optimal control problem will be constructed by a projection of the discrete adjoint state. It is proved that these approximations have convergence order h 2. Moreover, we derive a posteriori error estimates both for the control variable and the state variables. Finally, a numerical example is given to demonstrate the theoretical results.  相似文献   

13.
This paper studies a phase field model for the mixture of two immiscible and incompressible fluids. The model is described by a nonlinear parabolic system consisting of the nonstationary Stokes equations coupled with the Allen-Cahn equation through an extra phase induced stress term in the Stokes equations and a fluid induced transport term in the Allen-Cahn equation. Both semi-discrete and fully discrete finite element methods are developed for approximating the parabolic system. It is shown that the proposed numerical methods satisfy a discrete energy law which mimics the basic energy law for the phase field model. Error estimates are derived for the semi-discrete method, and the convergence to the phase field model and to its sharp interface limiting model are established for the fully discrete finite element method by making use of the discrete energy law. Numerical experiments are also presented to validate the theory and to show the effectiveness of the combined phase field and finite element approach.

  相似文献   


14.
In this work, a contact problem between an elastic body and a deformable obstacle is numerically studied. The bone remodeling of the material is also taken into account in the model and the contact is modeled using the normal compliance contact condition. The variational problem is written as a nonlinear variational equation for the displacement field, coupled with a first-order ordinary differential equation to describe the physiological process of bone remodeling. An existence and uniqueness result of weak solutions is stated. Then, fully discrete approximations are introduced based on the finite element method to approximate the spatial variable and an Euler scheme to discretize the time derivatives. Error estimates are obtained, from which the linear convergence of the algorithm is derived under suitable regularity conditions. Finally, some 2D numerical results are presented to demonstrate the behavior of the solution.  相似文献   

15.
In this paper, we apply the coupling of the boundary integral and finite element methods to study the weak solvability of certain nonmonotone nonlinear exterior boundary value problems. In order to convert the original exterior problem into an equivalent nonlocal boundary value problem on a finite region, we employ two different approaches based on the use of one and two integral equations on the coupling boundary. Existence of a solution for the associated weak formulation, and convergence properties of the corresponding Galerkin approximations are deduced from fundamental results in nonlinear functional analysis. Indeed, the main arguments of our proofs are based on a surjectivity theorem for mappings of type (S) and on the Fredholm alternative for nonlinear A-proper mappings.  相似文献   

16.
In this paper we study the residual type a posteriori error estimates for general elliptic (not necessarily symmetric) eigenvalue problems. We present estimates for approximations of semisimple eigenvalues and associated eigenvectors. In particular, we obtain the following new results: 1) An error representation formula which we use to reduce the analysis of the eigenvalue problem to the analysis of the associated source problem; 2) A local lower bound for the error of an approximate finite element eigenfunction in a neighborhood of a given mesh element T.  相似文献   

17.
This paper develops and analyzes a fully discrete finite element method for a class of semilinear stochastic partial differential equations(SPDEs)with multiplicative noise.The nonlinearity in the diffusion term of the SPDEs is assumed to be globally Lipschitz and the nonlinearity in the drift term is only assumed to satisfy a one-sided Lipschitz condition.These assumptions are the same ones as the cases where numerical methods for general nonlinear stochastic ordinary differential equations(SODEs)under"minimum assumptions"were studied.As a result,the semilinear SPDEs considered in this paper are a direct generalization of these nonlinear SODEs.There are several difficulties which need to be overcome for this generalization.First,obviously the spatial discretization,which does not appear in the SODE case,adds an extra layer of difficulty.It turns out a spatial discretization must be designed to guarantee certain properties for the numerical scheme and its stiffness matrix.In this paper we use a finite element interpolation technique to discretize the nonlinear drift term.Second,in order to prove the strong convergence of the proposed fully discrete finite element method,stability estimates for higher order moments of the H1-seminorm of the numerical solution must be established,which are difficult and delicate.A judicious combination of the properties of the drift and diffusion terms and some nontrivial techniques is used in this paper to achieve the goal.Finally,stability estimates for the second and higher order moments of the L2-norm of the numerical solution are also difficult to obtain due to the fact that the mass matrix may not be diagonally dominant.This is done by utilizing the interpolation theory and the higher moment estimates for the H1-seminorm of the numerical solution.After overcoming these difficulties,it is proved that the proposed fully discrete finite element method is convergent in strong norms with nearly optimal rates of convergence.Numerical experiment results are also presented to validate the theoretical results and to demonstrate the efficiency of the proposed numerical method.  相似文献   

18.
ABSTRACT

A posteriori error estimates for semidiscrete finite element methods for a nonlinear parabolic initial-boundary value problem are considered. The error estimates are obtained by solving local parabolic or elliptic equations for corrections to the solution on each element. The convergence results improve previous results where unnecessary assumptions are imposed on the approximate solution and the elliptic projection of the exact solution.  相似文献   

19.
In this paper, we study numerical approximations of a nonlinear eigenvalue problem and consider applications to a density functional model. We prove the convergence of numerical approximations. In particular, we establish several upper bounds of approximation errors and report some numerical results of finite element electronic structure calculations that support our theory. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
本文研究了Signorini变分不等式问题的一类各向异性Crouzeix-Raviart型非协调有限元逼近。通过一些新的技巧,得到了相应的最优误差估计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号