首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This article investigates the problem of robust dissipative fault‐tolerant control for discrete‐time systems with actuator failures. Based on the Lyapunov technique and linear matrix inequality (LMI) approach, a set of delay‐dependent sufficient conditions is developed for achieving the required result. A design scheme for the state‐feedback reliable dissipative controller is established in terms LMIs which can guarantee the asymptotic stability and dissipativity of the resulting closed‐loop system with actuator failures. In addition, the proposed controller not only stabilize the fault‐free system but also to guarantee an acceptable performance of the faulty system. Also as special cases, robust H control, passivity control, and mixed H and passivity control with the prescribed performances under given constraints can be obtained for the considered systems. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed fault‐tolerant control technique. © 2016 Wiley Periodicals, Inc. Complexity 21: 579–592, 2016  相似文献   

2.
This paper considers the problems of the robust stability analysis and H controller synthesis for uncertain discrete‐time switched systems with interval time‐varying delay and nonlinear disturbances. Based on the system transformation and by introducing a switched Lyapunov‐Krasovskii functional, the novel sufficient conditions, which guarantee that the uncertain discrete‐time switched system is robust asymptotically stable are obtained in terms of linear matrix inequalities. Then, the robust H control synthesis via switched state feedback is studied for a class of discrete‐time switched systems with uncertainties and nonlinear disturbances. We designed a switched state feedback controller to stabilize asymptotically discrete‐time switched systems with interval time‐varying delay and H disturbance attenuation level based on matrix inequality conditions. Examples are provided to illustrate the advantage and effectiveness of the proposed method.  相似文献   

3.
In this article, the problem of reliable gain‐scheduled H performance optimization and controller design for a class of discrete‐time networked control system (NCS) is discussed. The main aim of this work is to design a gain‐scheduled controller, which consists of not only the constant parameters but also the time‐varying parameter such that NCS is asymptotically stable. In particular, the proposed gain‐scheduled controller is not only based on fixed gains but also the measured time‐varying parameter. Further, the result is extended to obtain a robust reliable gain‐scheduled H control by considering both unknown disturbances and linear fractional transformation parametric uncertainties in the system model. By constructing a parameter‐dependent Lyapunov–Krasovskii functional, a new set of sufficient conditions are obtained in terms of linear matrix inequalities (LMIs). The existence conditions for controllers are formulated in the form of LMIs, and the controller design is cast into a convex optimization problem subject to LMI constraints. Finally, a numerical example based on a station‐keeping satellite system is given to demonstrate the effectiveness and applicability of the proposed reliable control law. © 2014 Wiley Periodicals, Inc. Complexity 21: 214–228, 2015  相似文献   

4.
This article examines the reliable L2 – L control design problem for a class of continuous‐time linear systems subject to external disturbances and mixed actuator failures via input delay approach. Also, due to the occurrence of nonlinear circumstances in the control input, a more generalized and practical actuator fault model containing both linear and nonlinear terms is constructed to the addressed control system. Our attention is focused on the design of the robust state feedback reliable sampled‐data controller that guarantees the robust asymptotic stability of the resulting closed‐loop system with an L2 – L prescribed performance level γ > 0, for all the possible actuator failure cases. For this purpose, by constructing an appropriate Lyapunov–Krasovskii functional (LKF) and utilizing few integral inequality techniques, some novel sufficient stabilization conditions in terms of linear matrix inequalities (LMIs) are established for the considered system. Moreover, the established stabilizability conditions pave the way for designing the robust reliable sampled‐data controller as the solution to a set of LMIs. Finally, as an example, a wheeled mobile robot trailer model is considered to illustrate the effectiveness of the proposed control design scheme. © 2016 Wiley Periodicals, Inc. Complexity 21: 309–319, 2016  相似文献   

5.
The problem of H robust control based on event‐triggered sampling for a class of singular hybrid systems with Markovian jump is considered in this paper. The primary object of this paper here is to design the event‐triggered sampling controller for a class of uncertain singular Markovian systems, and two fundamental issues on mean square exponential admissibility and H robust performance are fully addressed. By making use of a suitable Lyapunov functional, in combination with both infinitesimal operator and linear matrices inequalities(LMIs), the sufficient criteria are derived to guarantee the controlled singular hybrid system with Markovian jump is robustly exponentially mean‐square admissible and has a prescribed H performance γ. Finally, a typical RLC circuit system is given to show the effectiveness of the proposed control method.  相似文献   

6.
In this article, we study the problem of robust H performance analysis for a class of uncertain Markovian jump systems with mixed overlapping delays. Our aim is to present a new delay‐dependent approach such that the resulting closed‐loop system is stochastically stable and satisfies a prescribed H performance level χ. The jumping parameters are modeled as a continuous‐time, finite‐state Markov chain. By constructing new Lyapunov‐Krasovskii functionals, some novel sufficient conditions are derived to guarantee the stochastic stability of the equilibrium point in the mean‐square. Numerical examples show that the obtained results in this article is less conservative and more effective. The results are also compared with the existing results to show its conservativeness. © 2016 Wiley Periodicals, Inc. Complexity 21: 460–477, 2016  相似文献   

7.
This article deals with the problem of nonfragile H output tracking control for a kind of singular Markovian jump systems with time‐varying delays, parameter uncertainties, network‐induced signal transmission delays, and data packet dropouts. The main objective is to design mode‐dependent state‐feedback controller under controller gain perturbations and bounded modes transition rates such that the output of the closed‐loop networked control system tracks the output of a given reference system with the required H output tracking performance. By constructing a more multiple stochastic Lyapunov–Krasovskii functional, the novel mode‐dependent and delay‐dependent conditions are obtained to guarantee the augmented output tracking closed‐loop system is not only stochastically admissible but also satisfies a prescribed H‐norm level for all signal transmission delays, data packet dropouts, and admissible uncertainties. Then, the desired state‐feedback controller parameters are determined by solving a set of strict linear matrix inequalities. A simple production system example and two numerical examples are used to verify the effectiveness and usefulness of the proposed methods. © 2015 Wiley Periodicals, Inc. Complexity 21: 396–411, 2016  相似文献   

8.
Zhen Liu  Cunchen Gao 《Complexity》2016,21(Z2):165-177
This article is devoted to designing linear sliding surface and adaptive sliding mode controller for a class of singular time‐delay systems with parametric uncertainties and external disturbance. In terms of linear matrix inequalities (LMIs), a sufficient criteria of H performance, and admissibility for considered sliding motion restricted to linear sliding surface is achieved, and the controller which guarantees the finite‐time reachability of the predesigned sliding surface is then developed, respectively. Finally, three examples show the effectiveness of the proposed result. © 2016 Wiley Periodicals, Inc. Complexity 21: 165–177, 2016  相似文献   

9.
This paper studies the robust partially mode‐dependent H filtering for nonhomogeneous Markovian jump neural networks with additive gain perturbations. The discrete time‐varying jump transition probability matrix is considered to be a polytope set. A partially mode‐dependent filter with additive gain perturbations is constructed to increase the robustness of the filter, which is subjects to H performance index. Based on the Lyapunov function approach, sufficient conditions are established such that the filtering error system is robustly stochastically stable. The efficiency of the new technique is illustrated by an illustrative example and a biological network example.  相似文献   

10.
This paper is concerned with the observer-based control problem for Markovian jump delay systems with parameter uncertainties using quantized measurements. The parameter uncertainties are assumed to be norm bounded. The aim is to design a suitable observer-based controller which guarantees the stochastic stability of the resulting closed-loop system with a prescribed mixed passivity and H performance index. A novel stability criterion is obtained by constructing a mode-dependent Lyapunov–Krasovskii functional based on the delay-partitioning technique. Then, with the novel stability criterion, sufficient conditions for the solvability of the presented observer-based controller design problem are derived. All the results obtained in this paper can be tackled by a feasibility problem in terms of linear matrix inequalities. Finally, three numerical examples are provided to illustrate the effectiveness of the proposed methods.  相似文献   

11.
12.
This article addresses the problem of fault‐tolerant sampled‐data mixed and passivity control for a class of stochastic system with actuator failures, where the plant is modeled as a continuous‐time one and the control inputs are implemented as discrete‐time signals. Sufficient conditions for the reliable sampled‐data mixed and passivity performance control law is established for the considered systems by constructing an appropriate Lyapunov–Krasovskii functional together with the Newton–Leibniz formula and free‐weighting matrix technique. More precisely, linear matrix inequality based sampled‐data methodology is employed to design the mixed and passivity formation controller to reject the impact of the formation changes being treated as disturbances. Simulation studies are performed based on the flight control model to verify the stability, performance, and effectiveness of the proposed design strategy. © 2015 Wiley Periodicals, Inc. Complexity 21: 420–429, 2016  相似文献   

13.
This paper is concerned with the mixed H2/H∞ control for stochastic systems with random coefcients,which is actually a control combining the H2 optimization with the H∞robust performance as the name of H2/H∞ reveals.Based on the classical theory of linear-quadratic(LQ,for short)optimal control,the sufcient and necessary conditions for the existence and uniqueness of the solution to the indefinite backward stochastic Riccati equation(BSRE,for short)associated with H∞ robustness are derived.Then the sufcient and necessary conditions for the existence of the H2/H∞ control are given utilizing a pair of coupled stochastic Riccati equations.  相似文献   

14.
This paper investigates the problem of exponential H synchronization of discrete‐time chaotic neural networks with time delays and stochastic perturbations. First, by using the Lyapunov‐Krasovskii (Lyapunov) functional and output feedback controller, we establish the H performance of exponential synchronization in the mean square of master‐slave systems, which is analyzed using a matrix inequality approach. Second, the parameters of a desired output feedback controller can be achieved by solving a linear matrix inequality. Finally, 2 simulated examples are presented to show the effectiveness of the theoretical results.  相似文献   

15.
The problem of nonlinear sub-optimal H controller design with some applications is addressed in the paper. Nonlinear H control has robust performance in response to external disturbances and parameter uncertainty as well as capability in dealing with nonlinear systems. In order to obtain the nonlinear H control law, some partial differential inequalities so-called Hamilton–Jacobi–Isaacs (HJI) should be solved. There are some approximate solutions, which are generally based on the approximation of nonlinear parts of HJI inequalities. Using the Taylor series expansion, a sub-optimal solution for the HJI inequalities will be obtained. To assess the performance of the method, two applications are considered: the tracking problem of a two-degree-of-freedom rigid robot manipulator and speed control in a permanent magnet synchronous (PMS) motors. Simulation results show superior performance for higher order approximate controllers than that of lower order ones.  相似文献   

16.
A general class of discrete-time uncertain nonlinear stochastic systems corrupted by finite energy disturbances and estimation performance criteria are considered. These performance criteria include guaranteed-cost suboptimal versions of estimation objectives like H2, H, stochastic passivity, etc. Linear state estimators that satisfy these criteria are presented. A common matrix inequality formulation is used in characterization of estimator design equations.  相似文献   

17.
This paper studies the robust and resilient finite-time H control problem for uncertain discrete-time nonlinear systems with Markovian jump parameters. With the help of linear matrix inequalities and stochastic analysis techniques, the criteria concerning stochastic finite-time boundedness and stochastic H finite-time boundedness are initially established for the nonlinear stochastic model. We then turn to stochastic finite-time controller analysis and design to guarantee that the stochastic model is stochastically H finite-time bounded by employing matrix decomposition method. Applying resilient control schemes, the resilient and robust finite-time controllers are further designed to ensure stochastic H finite-time boundedness of the derived stochastic nonlinear systems. Moreover, the results concerning stochastic finite-time stability and stochastic finite-time boundedness are addressed. All derived criteria are expressed in terms of linear matrix inequalities, which can be solved by utilizing the available convex optimal method. Finally, the validity of obtained methods is illustrated by numerical examples.  相似文献   

18.
This article presents the robust dissipativity and passivity analysis of neutral‐type neural networks with leakage time‐varying delay via delay decomposition approach. Using delay decomposition technique, new delay‐dependent criteria ensuring the considered system to be ‐γ dissipative are established in terms of strict linear matrix inequalities. A new Lyapunov–Krasovskii functional is constructed by dividing the discrete and neutral delay intervals into m and l segments, respectively, and choosing different Lyapunov functionals to different segments. Further, the dissipativity behaviors of neural networks which are affected due to the sensitiveness of the time delay in the leakage term have been taken into account. Finally, numerical examples are provided to show the effectiveness of the proposed method. © 2015 Wiley Periodicals, Inc. Complexity 21: 248–264, 2016  相似文献   

19.
This article focuses on the robust sampled‐data control for a class of uncertain switched neutral systems based on the average dwell‐time approach. In particular, the system is considered with probabilistic input delay using sampled state vectors, which are described by the stochastic variables with a Bernoulli distributed white sequence and time‐varying norm‐bounded uncertainties. By constructing a novel Lyapunov–Krasovskii functional which involves the lower and upper bounds of the delay, a new set of sufficient conditions are derived in terms of linear matrix inequalities for ensuring the robust exponential stability of the uncertain switched neutral system about its equilibrium point. Moreover, based on the stability criteria, a state feedback sampled‐data control law is designed for the considered system. Finally, a numerical example based on the water‐quality dynamic model for the Nile River is given to illustrate the effectiveness of the proposed design technique. © 2015 Wiley Periodicals, Inc. Complexity 21: 308–318, 2016  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号