首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 624 毫秒
1.
An analysis has been carried out to describe mixed convection heat transfer in the boundary layers on an exponentially stretching continuous surface with an exponential temperature distribution in the presence of magnetic field, viscous dissipation and internal heat generation/absorption. Approximate analytical similarity solutions of the highly non-linear momentum and energy equations are obtained. The present results are found to be in excellent agreement with previously published work on various special cases of the problem. Numerical results for temperature distribution and the local Nusselt number have been obtained for different values of the governing parameters. The numerical solutions are obtained by considering an exponential dependent stretching velocity and prescribed boundary temperature on the flow directional coordinate. The effects of various physical parameters like Prandtl number, Hartman number, Grashof number on dimensionless heat transfer characteristics are discussed in detail. In particular, it has been found that increase in Prandtl number decreases the skin-friction coefficient at the stretching surface, while increase in the strength of the magnetic field leads to increase in the local Nusselt number.  相似文献   

2.
Certain solutions of Magnetohydrodynamic boundary layer equations for a flat plate with a transverse magnetic field fixed relative to the fluid have been obtained using a power-series method given by Hassan. This power series solution has all the desirable qualities of Görtler series and, in addition, its zeroth order term which is governed by a non-linear total differential equation can be given in closed form. The first order term governed by a linear total differential equation has been integrated numerically. The results are tabulated for various values of S, the interaction parameter. The results show a decrease in the boundary layer thickness with a consequent increase in skin friction as the strength of magnetic field is increased.  相似文献   

3.
The steady Von Kármán flow and heat transfer of an electrically conducting non-Newtonian fluid is extended to the case where the disk surface admits partial slip. The fluid is subjected to an external uniform magnetic field perpendicular to the plane of the disk. The constitutive equation of the non-Newtonian fluid is modeled by that for a Reiner–Rivlin fluid. The momentum equations give rise to highly non-linear boundary value problem. Numerical solutions for the governing non-linear equations are obtained over the entire range of the physical parameters. The effects of slip, magnetic parameter and non-Newtonian fluid characteristics on the velocity and temperature fields are discussed in detail and shown graphically. Emphasis has been laid to study the effects of viscous dissipation and Joule heating on the thermal boundary layer. It is interesting to find that the non-Newtonian cross-viscous parameter has an opposite effect to that of the slip and the magnetic parameter on the velocity and the temperature fields.  相似文献   

4.
In this paper a study is carried out to understand the transition effect of boundary layer flow: (1) due to a suddenly imposed magnetic field over a viscous flow past a stretching sheet and (2) due to sudden withdrawal of magnetic field over a viscous flow past a stretching sheet under a magnetic field. In both the cases the sheet stretches linearly along the direction of the fluid flow. Governing equations have been non-dimensionalised and the non-dimensionalised equations have been solved using the implicit finite difference method of Crank–Nicholson type. Comparison between the steady state exact solutions and the steady state computed solutions has been carried out. Graphical representation of the dimensionless horizontal velocity, vertical velocity and local skin friction profiles of the steady state and unsteady state has been presented. Computation has been carried out for various values of the magnetic parameter M. The obtained results has been interpreted and discussed.  相似文献   

5.
The problem of stability of stationary solutions of the Vlasov–Poisson system has received a lot of attention in the physics literature, both in the stellar dynamics and the plasma physics cases. The energy-Casimir method has been used to prove non-linear stability for various conservative systems, but no rigorous application to the Vlasov–Poisson system has been given yet. We employ this method to prove non-linear stability of stationary solutions for the plasma physics case in three geometrically different settings.  相似文献   

6.
Of concern in this paper is an investigation of biomagnetic flow of a non-Newtonian viscoelastic fluid over a stretching sheet under the influence of an applied magnetic field generated owing to the presence of a magnetic dipole. The viscoelasticity of the fluid is characterised by Walter’s B fluid model. The applied magnetic field has been considered to be sufficiently strong to saturate the ferrofluid. The magnetization of the fluid is considered to vary linearly with temperature as well as the magnetic field intensity. The theoretical treatment of the physical problem consists of reducing it to solving a system of non-linear coupled differential equations that involve six parameters, which are solved by developing a finite difference technique. The velocity profile, the skin-friction, the wall pressure and the rate of heat transfer at the sheet are computed for a specific situation. The study shows that the fluid velocity increases as the rate of heat transfer decreases, while the local skin-friction and the wall pressure increase as the magnetic field strength is increased. It is also revealed that fluid viscoelasticity has an enhancing effect on the local skin-friction. The study will have an important bearing on magnetic drug targeting and separation of red cells as well as on the control of blood flow during surgery.  相似文献   

7.
The similarity solution for the unsteady laminar incompressible boundary layer flow of a viscous electrically conducting fluid in stagnation point region of an impulsively rotating and translating sphere with a magnetic field and a buoyancy force gives a system of non-linear partial differential equations. These non-linear differential equations are analytically solved by applying a newly developed method, namely the homotopy analysis method (HAM). The analytic solutions of the system of non-linear differential equations are constructed in the series form. The convergence of the obtained series solutions is carefully analyzed. Graphical results are presented to investigate the influence of the magnetic parameter, buoyancy parameter and rotation parameter on the surface shear stresses and surface heat transfer. It is noted that the behavior of the HAM solution for the surface shear stresses and surface heat transfer is in good agreement with the numerical solution given in reference [H. S. Takhar, A. J. Chamkha, G. Nath, Unsteady laminar MHD flow and heat transfer in the stagnation region of an impulsively spinning and translating sphere in the presence of buoyancy forces, Heat Mass Transfer 37 (2001) 397].  相似文献   

8.
The flow of a heated ferrofluid over a linearly stretching sheet is studied in the pres- ence of an applied magnetic field due to a magnetic dipole. It is assumed that the applied magnetic field is sufficiently strong to saturate the ferrofluid and the variation of magnetization with temperature can be approximated by a non linear function of temperature difference. By introducing appropriate non dimensional variables the problem is described by a coupled and non linear system of ordinary differential equations with its boundary conditions which is solved numerically by applying an efficient numerical technique based on the common finite difference method. The obtained results are presented graphically for different values of the parameters entering into the problem under consideration and the dependence of the flow field from these parameters is discussed. A comparative study, with a similar problem which has already been solved and documented in literature, is also made wherever necessary, emphasizing the impor- tance of the non-linear variation of magnetization with temperature. Emphasis is also given in the obtained results for Prandtl number equal to 21 and critical exponent = 0.368 which are important and interesting in Biomagnetic Fluid Dynamics.  相似文献   

9.
The flow of a heated ferrofluid over a linearly stretching sheet is studied in the pres- ence of an applied magnetic field due to a magnetic dipole. It is assumed that the applied magnetic field is sufficiently strong to saturate the ferrofluid and the variation of magnetization with temperature can be approximated by a non linear function of temperature difference. By introducing appropriate non dimensional variables the problem is described by a coupled and non linear system of ordinary differential equations with its boundary conditions which is solved numerically by applying an efficient numerical technique based on the common finite difference method. The obtained results are presented graphically for different values of the parameters entering into the problem under consideration and the dependence of the flow field from these parameters is discussed. A comparative study, with a similar problem which has already been solved and documented in literature, is also made wherever necessary, emphasizing the impor- tance of the non-linear variation of magnetization with temperature. Emphasis is also given in the obtained results for Prandtl number equal to 21 and critical exponent = 0.368 which are important and interesting in Biomagnetic Fluid Dynamics.  相似文献   

10.
A non-standard finite difference scheme for a harvesting Leslie–Gower equations is constructed. It is shown that the obtained difference system has the same dynamics as the original continuous system, such as positivity of solutions, equilibria and their local stability properties, irrespective of the size of numerical time step. To illustrate the analytical results, we present some numerical simulations.  相似文献   

11.
In this paper, we study an asymptotic behavior of a solution to the outflow problem for a two-phase model with magnetic field. Our idea mainly comes from [1] and [2] which investigate the asymptotic stability and convergence rates of stationary solutions to the outflow problem for an isentropic Navier–Stokes equation. For the two-phase model with magnetic field, we also obtain the asymptotic stability and convergence rates of global solutions towards corresponding stationary solutions if the initial perturbation belongs to the weighted Sobolev space. The proof is based on the weighted energy method.  相似文献   

12.
We study the theory of scattering for a Schrödinger equation in an external time-dependent magnetic field in the Coulomb gauge, in space dimension 3. The magnetic vector potential is assumed to satisfy decay properties in time that are typical of solutions of the free wave equation, and even in some cases to be actually a solution of that equation. That problem appears as an intermediate step in the theory of scattering for the Maxwell-Schrödinger (MS) system. We prove in particular the existence of wave operators and their asymptotic completeness in spaces of relatively low regularity. We also prove their existence or at least asymptotic results going in that direction in spaces of higher regularity. The latter results are relevant for the MS system. As a preliminary step, we study the Cauchy problem for the original equation by energy methods, using as far as possible time derivatives instead of space derivatives.  相似文献   

13.
This paper presents a study of the non-linear response of a simple rigid disk-rotor, supported by active magnetic bearings (AMB), without gyroscopic effects. The case of primary resonance is examined under multi-excitation forces. The rotating shaft is described by a coupled second order non-linear ordinary differential equations. Approximate solutions are sought applying the method of multiple scales. Numerical simulations are carried out to illustrate the steady-state response and the stability of the solutions for various parameters using the frequency response function method. It is shown that the system parameters have different effects on the non-linear response of the rotor. For steady-state response, however, multiple-valued solutions and jump phenomenon occur. Results are compared to previously published work.  相似文献   

14.
A mathematical analysis has been carried out to study magnetohydrodynamic boundary layer flow, heat and mass transfer characteristic on steady two-dimensional flow of a micropolar fluid over a stretching sheet embedded in a non-Darcian porous medium with uniform magnetic field. Momentum boundary layer equation takes into account of transverse magnetic field whereas energy equation takes into account of Ohmic dissipation due to transverse magnetic field, thermal radiation and non-uniform source effects. An analysis has been performed for heating process namely the prescribed wall heat flux (PHF case). The governing system of partial differential equations is first transformed into a system of non-linear ordinary differential equations using similarity transformation. The transformed equations are non-linear coupled differential equations which are then linearized by quasi-linearization method and solved very efficiently by finite-difference method. Favorable comparisons with previously published work on various special cases of the problem are obtained. The effects of various physical parameters on velocity, temperature, concentration distributions are presented graphically and in tabular form.  相似文献   

15.
A finite difference time-dependent numerical method for the wave equation, supported by recently derived novel elliptic grids, is analyzed. The method is successfully applied to single and multiple two-dimensional acoustic scattering problems including soft and hard obstacles with complexly shaped boundaries. The new grids have nearly uniform cell area (J-grids) and nearly uniform grid line spacing (αγ-grids). Numerical experiments reveal the positive impact of these two grid properties on the scattered field convergence to its harmonic steady state. The restriction imposed by stability conditions on the time step size is relaxed due to the near uniformity cell areas and grid line spacing. As a consequence, moderately large time steps can be used for relatively fine spatial grids resulting in greater accuracy at a lower computational cost. Also, numerical solutions for wave problems inside annular regions of complex shapes are obtained. The use of the new grids results in late time stability in contrast with other classical finite difference time-dependent methods.  相似文献   

16.
Hydrodynamic instabilities may occur when a viscous fluid is driven by a less viscous one through a porous medium. These penetrations are common in enhanced oil recovery, dendrite formation and aquifer flow. Recent studies have shown that the use of magnetic suspensions allow the external control of the instability. The problem is nonlinear and some further improvements of both theory and experimental observations are still needed and continue being a current source of investigation. In this paper we present a generalized Darcy law formulation in order to examine the growth of finger instabilities as a magnetic field is applied to the interface between the fluids in a Hele-Shaw cell. A new linear stability analysis is performed in the presence of magnetic effects and provides a stability criterion in terms of the non-dimensional physical parameters of the examined flow and the wavenumber of the finger disturbances. The interfacial tension inhibits small wavelength instabilities. The magnetic field contributes to the interface stability for moderate wavelength as it is applied parallel to the liquid-interface. In particular, we find an explicit expression, as a function of the susceptibility, for a critical angle between the interface and the magnetic field direction, in which its effect on the interface is neutral. We have developed a new asymptotic solution for the flow problem in a weak nonlinear regime. The first correction captures the second order nonlinear effects of the magnetic field, which tends to align the fingers with the field orientation and have a destabilizing effect. The analysis predicts that the non-linear effects at second order can counterbalance the first order stabilizing effect of a parallel magnetic field which results in a loss of effectiveness for controlling the investigated finger instabilities. The relevant physical parameters for controlling these finger instabilities are clearly identified by our non-dimensional analysis.  相似文献   

17.
The problem of flow of an electrically conducting viscous liquid due to the time-varying motion of an infinite porous plate has been studied. There is a uniform magnetic field imposed transversely to the plate and the magnetic lines of force are taken to be fixed relative to the fluid. Exact solutions for the velocity field and the skin-friction have been obtained and some particular cases have been discussed. The effect of suction parameter and magnetic field strength on the flow characteristics have been depicted through several graphs and tables.  相似文献   

18.
In this article, numerical solution for the Rosenau-RLW equation in 2D is considered and a conservative Crank–Nicolson finite difference scheme is proposed. Existence of the numerical solutions for the difference scheme has been shown by Browder fixed point theorem. A priori bound and uniqueness as well as conservation of discrete mass and discrete energy for the finite difference solutions are discussed. Unconditional stability and a second-order accuracy on both space and time of the difference scheme are proved. Numerical experiments are given to support our theoretical results.  相似文献   

19.
Series solution of magnetohydrodynamic (MHD) and rotating flow over a porous shrinking sheet is obtained by a homotopy analysis method (HAM). The viscous fluid is electrically conducting in the presence of a uniform applied magnetic field and the induced magnetic field is neglected for small magnetic Reynolds number. Similarity solutions of coupled non-linear ordinary differential equations resulting from the momentum equation are obtained. Convergence of the obtained solutions is ensured by the proper choice of auxiliary parameter. Graphs are sketched and discussed for various emerging parameters on the velocity field. The variations of the wall shear stress f″(0) and ?g′(0) are also tabulated and analyzed.  相似文献   

20.
A sequential method is proposed to estimate boundary condition of the two-dimensional hyperbolic heat conduction problems. An inverse solution is deduced from a finite difference method, the concept of the future time and a modified Newton–Raphson method. The undetermined boundary condition at each time step is denoted as an unknown variable in a set of non-linear equations, which are formulated from the measured temperature and the calculated temperature. Then, an iterative process is used to solve the set of equations. No selected function is needed to represent the undetermined function in advance. The example problem is used to demonstrate the characteristics of the proposed method. In the example, a well-known problem is used to demonstrate the validity of the proposed direct method and then the inverse solutions are evaluated. In the second example, the larger value of the relaxation time is implemented in the direct solutions and the inverse solutions. The close agreement between the exact values and the estimated results is made to confirm the validity and accuracy of the proposed method. The results show that the proposed method is an accurate and stable method to determine the boundary conditions in the two-dimensional inverse hyperbolic heat conduction problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号