首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a unified framework for the design and convergence analysis of a class of algorithms based on approximate solution of proximal point subproblems. Our development further enhances the constructive approximation approach of the recently proposed hybrid projection–proximal and extragradient–proximal methods. Specifically, we introduce an even more flexible error tolerance criterion, as well as provide a unified view of these two algorithms. Our general method possesses global convergence and local (super)linear rate of convergence under standard assumptions, while using a constructive approximation criterion suitable for a number of specific implementations. For example, we show that close to a regular solution of a monotone system of semismooth equations, two Newton iterations are sufficient to solve the proximal subproblem within the required error tolerance. Such systems of equations arise naturally when reformulating the nonlinear complementarity problem.

  相似文献   

2.
We solve an abstract parabolic problem in a separable Hilbert space, using the projection-difference method. The spatial discretization is carried out by the Galerkin method and the time discretization, by the Crank–Nicolson scheme. On assuming weak solvability of the exact problem, we establish effective energy estimates for the error of approximate solutions. These estimates enable us to obtain the rate of convergence of approximate solutions to the exact solution in time up to the second order. Moreover, these estimates involve the approximation properties of the projection subspaces, which is illustrated by subspaces of the finite element type.  相似文献   

3.
In this paper we describe the Rothe-finite element numerical scheme to find an approximate solution of a nonlinear diffusion problem modeled as a parabolic partial differential equation of even order. This scheme is based on the Rothe’s approximation in time and on the finite element method (FEM) approximation in the spatial discretization. A proof of convergence of the approximate solution is given and error estimates are shown.  相似文献   

4.
王艳芳  王然  康彤 《计算数学》2016,38(2):125-142
针对带有铁磁材料的非线性涡流问题,其非线性性通常体现在磁场强度和磁感应强度的关系上.本文提出了一种全离散的有限元A-φ格式,分别在时间和空间上采用向后欧拉公式以及节点有限元进行离散.首先,在合适的函数空间里给出时间上的半离散格式,通过考察其弱形式建立相应的适定性理论,并证明近似解收敛于弱解.其次,给出全离散格式并讨论其误差估计.最后,给出两个数值算例以验证理论结果.  相似文献   

5.
In this paper, we propose a method based on deep neural networks to solve obstacle problems. By introducing penalty terms, we reformulate the obstacle problem as a minimization optimization problem and utilize a deep neural network to approximate its solution. The convergence analysis is established by decomposing the error into three parts: approximation error, statistical error and optimization error. The approximate error is bounded by the depth and width of the network, the statistical error is estimated by the number of samples, and the optimization error is reflected in the empirical loss term. Due to its unsupervised and meshless advantages, the proposed method has wide applicability. Numerical experiments illustrate the effectiveness and robustness of the proposed method and verify the theoretical proof.  相似文献   

6.
The trust region problem, minimization of a quadratic function subject to a spherical trust region constraint, occurs in many optimization algorithms. In a previous paper, the authors introduced an inexpensive approximate solution technique for this problem that involves the solution of a two-dimensional trust region problem. They showed that using this approximation in an unconstrained optimization algorithm leads to the same theoretical global and local convergence properties as are obtained using the exact solution to the trust region problem. This paper reports computational results showing that the two-dimensional minimization approach gives nearly optimal reductions in then-dimension quadratic model over a wide range of test cases. We also show that there is very little difference, in efficiency and reliability, between using the approximate or exact trust region step in solving standard test problems for unconstrained optimization. These results may encourage the application of similar approximate trust region techniques in other contexts.Research supported by ARO contract DAAG 29-84-K-0140, NSF grant DCR-8403483, and NSF cooperative agreement DCR-8420944.  相似文献   

7.
We suggest a numerical approximation for an optimization problem, motivated by its applications in finance to find the model-free no-arbitrage bound of variance options given the marginal distributions of the underlying asset. A first approximation restricts the computation to a bounded domain. Then we propose a gradient projection algorithm together with the finite difference scheme to solve the optimization problem. We prove the general convergence, and derive some convergence rate estimates. Finally, we give some numerical examples to test the efficiency of the algorithm.  相似文献   

8.
The paper gives a systematic study of the approximate versions of three greedy-type algorithms that are widely used in convex optimization. By an approximate version we mean the one where some of evaluations are made with an error. Importance of such versions of greedy-type algorithms in convex optimization and approximation theory was emphasized in previous literature.  相似文献   

9.
We propose and analyze an a posteriori error estimator for a partial differential equation (PDE)-constrained optimization problem involving a nondifferentiable cost functional, fractional diffusion, and control-constraints. We realize fractional diffusion as the Dirichlet-to-Neumann map for a nonuniformly PDE and propose an equivalent optimal control problem with a local state equation. For such an equivalent problem, we design an a posteriori error estimator which can be defined as the sum of four contributions: two contributions related to the approximation of the state and adjoint equations and two contributions that account for the discretization of the control variable and its associated subgradient. The contributions related to the discretization of the state and adjoint equations rely on anisotropic error estimators in weighted Sobolev spaces. We prove that the proposed a posteriori error estimator is locally efficient and, under suitable assumptions, reliable. We design an adaptive scheme that yields, for the examples that we perform, optimal experimental rates of convergence.  相似文献   

10.
This paper presents finite element methods to approximate inviscid incompressible flow problems. First we emphasize the conservation properties of these problems, and we show that finite element methods appear as a very natural way to find conservative schemes such as Arakawa's scheme. We give convergence theorems and an error analysis of finite element discretization schemes. We turn then to the time differencing problem. We derive stability and convergence results for a second-order semi-implicit scheme and for the leap-frog scheme.  相似文献   

11.
A Regularized Newton-Like Method for Nonlinear PDE   总被引:1,自引:0,他引:1  
An adaptive regularization strategy for stabilizing Newton-like iterations on a coarse mesh is developed in the context of adaptive finite element methods for nonlinear PDE. Existence, uniqueness and approximation properties are known for finite element solutions of quasilinear problems assuming the initial mesh is fine enough. Here, an adaptive method is started on a coarse mesh where the finite element discretization and quadrature error produce a sequence of approximate problems with indefinite and ill-conditioned Jacobians. The methods of Tikhonov regularization and pseudo-transient continuation are related and used to define a regularized iteration using a positive semidefinite penalty term. The regularization matrix is adapted with the mesh refinements and its scaling is adapted with the iterations to find an approximate sequence of coarse-mesh solutions leading to an efficient approximation of the PDE solution. Local q-linear convergence is shown for the error and the residual in the asymptotic regime and numerical examples of a model problem illustrate distinct phases of the solution process and support the convergence theory.  相似文献   

12.
We consider an infinite horizon discounted optimal control problem and its time discretized approximation, and study the rate of convergence of the approximate solutions to the value function of the original problem. In particular we prove the rate is of order 1 as the discretization step tends to zero, provided a semiconcavity assumption is satisfied. We also characterize the limit of the optimal controls for the approximate problems within the framework of the theory of relaxed controls.This work was done while the authors were visiting members of The Department of Mathematics of The University of Maryland at College Park.  相似文献   

13.
A cascadic multigrid algorithm is substantiated for a grid problem obtained by discretization of a second-order elliptic equation with second-order finite elements on triangles. The efficiency of the algorithm is proved. In particular, it is shown that the number of arithmetic operations required to achieve the order of accuracy of an approximate solution equal to that of the discretization error depends linearly on the number of unknowns. The rate of convergence is found to be higher than one for linear finite elements despite achieving a higher order of accuracy.  相似文献   

14.
A computational technique for unconstrained optimal control problems is presented. First, an Euler discretization is carried out to obtain a finite-dimensional approximation of the continuous-time (infinite-dimensional) problem. Then, an inexact restoration (IR) method due to Birgin and Martínez is applied to the discretized problem to find an approximate solution. Convergence of the technique to a solution of the continuous-time problem is facilitated by the convergence of the IR method and the convergence of the discrete (approximate) solution as finer subdivisions are taken. The technique is numerically demonstrated by means of a problem involving the van der Pol system; comprehensive comparisons are made with the Newton and projected Newton methods.  相似文献   

15.
《Journal of Complexity》2003,19(4):458-473
Our objective is to study nonlinear approximation with regard to redundant systems. Redundancy on the one hand offers much promise for greater efficiency in terms of approximation rate, but on the other hand gives rise to highly nontrivial theoretical and practical problems. Greedy-type approximations proved to be convenient and efficient ways of constructing m-term approximants. We introduce and study vector greedy algorithms that are designed with aim of constructing mth greedy approximants simultaneously for a given finite number of elements. We prove convergence theorems and obtain some estimates for the rate of convergence of vector greedy algorithms when elements come from certain classes.  相似文献   

16.
This paper deals with multi-objective optimization in the case of expensive objective functions. Such a problem arises frequently in engineering applications where the main purpose is to find a set of optimal solutions in a limited global processing time. Several algorithms use linearly combined criteria to use directly mono-objective algorithms. Nevertheless, other algorithms, such as multi-objective evolutionary algorithm (MOEA) and model-based algorithms, propose a strategy based on Pareto dominance to optimize efficiently all criteria. A widely used model-based algorithm for multi-objective optimization is Pareto efficient global optimization (ParEGO). It combines linearly the objective functions with several random weights and maximizes the expected improvement (EI) criterion. However, this algorithm tends to favor parameter values suitable for the reduction of the surrogate model error, rather than finding non-dominated solutions. The contribution of this article is to propose an extension of the ParEGO algorithm for finding the Pareto Front by introducing a double Kriging strategy. Such an innovation allows to calculate a modified EI criterion that jointly accounts for the objective function approximation error and the probability to find Pareto Set solutions. The main feature of the resulting algorithm is to enhance the convergence speed and thus to reduce the total number of function evaluations. This new algorithm is compared against ParEGO and several MOEA algorithms on a standard benchmark problems. Finally, an automotive engineering problem allowing to illustrate the applicability of the proposed approach is given as an example of a real application: the parameter setting of an indirect tire pressure monitoring system.  相似文献   

17.
The paper discusses a general framework for outer approximation type algorithms for the canonical DC optimization problem. The algorithms rely on a polar reformulation of the problem and exploit an approximated oracle in order to check global optimality. Consequently, approximate optimality conditions are introduced and bounds on the quality of the approximate global optimal solution are obtained. A thorough analysis of properties which guarantee convergence is carried out; two families of conditions are introduced which lead to design six implementable algorithms, whose convergence can be proved within a unified framework.  相似文献   

18.
In some previous papers the author extended two algorithms proposed by Z. Kovarik for approximate orthogonalization of a finite set of linearly independent vectors from a Hilbert space, to the case when the vectors are rows (not necessary linearly independent) of an arbitrary rectangular matrix. In this paper we describe combinations between these two methods and the classical Kaczmarz’s iteration. We prove that, in the case of a consistent least-squares problem, the new algorithms so obtained converge to any of its solutions (depending on the initial approximation). The numerical experiments described in the last section of the paper on a problem obtained after the discretization of a first kind integral equation ilustrate the fast convergence of the new algorithms.  相似文献   

19.
In this work we present a new numerical method, based on a coupling of finite and boundary elements, to solve a fluid‐solid interaction problem in the plane. The discrete method uses classical Lagrange finite elements adapted to curved boundaries for the field variable and spectral approximation of the unknowns on the artificial boundary. We provide error estimates for this Galerkin scheme and propose a full discretization based on elementary quadrature formulae, showing that the perturbation due to numerical integration preserves the optimal rate of convergence. We also suggest an iterative method to solve the complicated linear systems arising from this type of schemes. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

20.
This paper presents an a posteriori error analysis for the linear finite element approximation of the Signorini problem in two space dimensions. A posteriori estimations of residual type are defined and upper and lower bounds of the discretization error are obtained. We perform several numerical experiments in order to compare the convergence of the terms in the error estimator with the discretization error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号