首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The characteristics of steady two-dimensional laminar boundary layer flow of a viscous and incompressible fluid past a moving wedge with suction or injection are theoretically investigated. The transformed boundary layer equations are solved numerically using an implicit finite-difference scheme known as the Keller-box method. The effects of Falkner-Skan power-law parameter (m), suction/injection parameter (f0) and the ratio of free stream velocity to boundary velocity parameter (λ) are discussed in detail. The numerical results for velocity distribution and skin friction coefficient are given for several values of these parameters. Comparisons with the existing results obtained by other researchers under certain conditions are made. The critical values off 0,m and λ are obtained numerically and their significance on the skin friction and velocity profiles is discussed. The numerical evidence would seem to indicate the onset of reverse flow as it has been found by Riley and Weidman in 1989 for the Falkner-Skan equation for flow past an impermeable stretching boundary.  相似文献   

2.
We consider a laminar boundary‐layer flow of a viscous and incompressible fluid past a moving wedge in which the wedge is moving either in the direction of the mainstream flow or opposite to it. The mainstream flows outside the boundary layer are approximated by a power of the distance from the leading boundary layer. The variable pressure gradient is imposed on the boundary layer so that the system admits similarity solutions. The model is described using 3‐dimensional boundary‐layer equations that contains 2 physical parameters: pressure gradient (β) and shear‐to‐strain‐rate ratio parameter (α). Two methods are used: a linear asymptotic analysis in the neighborhood of the edge of the boundary layer and the Keller‐box numerical method for the full nonlinear system. The results show that the flow field is divided into near‐field region (mainly dominated by viscous forces) and far‐field region (mainstream flows); the velocity profiles form through an interaction between 2 regions. Also, all simulations show that the subsequent dynamics involving overshoot and undershoot of the solutions for varying parameter characterizing 3‐dimensional flows. The pressure gradient (favorable) has a tendency of decreasing the boundary‐layer thickness in which the velocity profiles are benign. The wall shear stresses increase unboundedly for increasing α when the wedge is moving in the x‐direction, while the case is different when it is moving in the y‐direction. Further, both analysis show that 3‐dimensional boundary‐layer solutions exist in the range −1<α<. These are some interesting results linked to an important class of boundary‐layer flows.  相似文献   

3.
An analytical study is performed on heat and mass transfer in MHD‐free convection from a moving permeable vertical surface and the results are compared with previous works on this phenomenon to test the validity. The coupled equations of boundary layer are transformed from their non‐linear form to ordinary form using similarity transformation and then are solved by a newly developed method, homotopy analysis method. Having different base functions, homotopy analysis method provides us with great freedom in choosing the solution of a nonlinear problem. Solving the boundry layer equations, the effects of different parameters such as magnetic field strength parameter (M), Prandtl number (Pr), Schmidt number (Sc), buoyancy ratio and suction/blowing parameter (fw) on velocity, temperature, and concentration profiles are taken into consideration. Obtained results show that increment of magnetic field strength parameter (M) leads to decrease in velocity profile. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
研究了运动的粘性导电流体中可渗透收缩壁面上非稳态磁流体边界层流动,利用解析和数值方法对问题进行了研究,并考虑了壁面速度滑移的影响.提出了一个新的解析方法(DTM-BF),并将其应用于求解带有无穷远边界条件的非线性控制方程的近似解析解.对所有的解析结果和数值结果进行了对比,结果显示两者非常吻合,从而证明了DTM-BF方法的有效性.另外,对不同的参数,得到了控制方程双解和单解的存在范围.最后,分别讨论了滑移参数、非稳态参数、磁场参数、抽吸/喷注参数和速度比例参数对壁面摩擦、唯一解速度分布和双解速度分布的影响.  相似文献   

5.
Both numerical and asymptotic analyses are performed to study the similarity solutions of three‐dimensional boundary‐layer viscous stagnation point flow in the presence of a uniform magnetic field. The three‐dimensional boundary‐layer is analyzed in a non‐axisymmetric stagnation point flow, in which the flow is developed because of influence of both applied magnetic field and external mainstream flow. Two approaches for the governing equations are employed: the Keller‐box numerical simulations solving full nonlinear coupled system and a corresponding linearized system that is obtained under a far‐field behavior and in the limit of large shear‐to‐strain‐rate parameter (λ). From these two approaches, the flow phenomena reveals a rich structure of new family of solutions for various values of the magnetic number and λ. The various results for the wall stresses and the displacement thicknesses are presented along with some velocity profiles in both directions. The analysis discovered that the flow separation occurs in the secondary flow direction in the absence of magnetic field, and the flow separation disappears when the applied magnetic field is increased. The flow field is divided into a near‐field (due to viscous forces) and far‐field (due to mainstream flows), and the velocity profiles form because of an interaction between two regions. The magnetic field plays an important role in reducing the thickness of the boundary‐layer. A physical explanation for all observed phenomena is discussed. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

6.
The magnetohydrodynamic steady-state laminar flow of a viscous incompressible and electrically conducting fluid over a continuous permeable stretching surface is considered. It is shown that in the presence of a vertical inverse-linear magnetic field, we establish a sufficient condition for the existence of exact solutions of this problem with respect to the three parameters: the magnetic parameter M, the suction/injection parameter γ, and the stretching parameter ξ. Numerical results are also obtained and give the effect of the suction parameter and the magnetic parameter on the velocity.  相似文献   

7.
This paper is concerned with the homogenization of the equations describing a magnetohydrodynamic boundary layer flow past a flat plate, the flow being subjected to velocities caused by injection and suction. The fluid is assumed incompressible, viscous and electrically conducting with a magnetic field applied transversally to the direction of the flow. The velocities of injection and suction and the applied magnetic field are represented by rapidly oscillating functions according to several scales. We derive the homogenized equations, prove convergence results and establish error estimates in a weighted Sobolev norm and in C 0-norm. We also examine the asymptotic behavior of the solutions of the equations governing a boundary layer flow past a rough plate with a locally periodic oscillating structure.  相似文献   

8.
The effects of suction and injection on steady laminar mixed convection boundary layer flow over a permeable horizontal flat plate in a viscous and incompressible fluid is investigated in this paper. The similarity solutions of the governing boundary layer equations are obtained for some values of the suction and injection parameter f0, the constant exponent n of the wall temperature as well as the mixed convection parameter λ. The resulting system of nonlinear ordinary differential equations is solved numerically for both assisting and opposing flow regimes using a finite-difference scheme known as the Keller-box method. Numerical results for the reduced skin friction coefficient, the reduced local Nusselt number, and the velocity and temperature profiles are obtained for various values of the parameters considered. Dual solutions are found to exist for the opposing flow.  相似文献   

9.
In this paper, heat and mass transfer analysis for boundary layer stagnation-point flow over a stretching sheet in a porous medium saturated by a nanofluid with internal heat generation/absorption and suction/blowing is investigated. The governing partial differential equation and auxiliary conditions are converted to ordinary differential equations with the corresponding auxiliary conditions via Lie group analysis. The boundary layer temperature, concentration and nanoparticle volume fraction profiles are then determined numerically. The influences of various relevant parameters, namely, thermophoresis parameter Nt, Brownian motion parameter Nb, Lewis number Le, suction/injection parameter S, permeability parameter k1, source/sink parameter λ and Prandtl parameter Pr on temperature and concentration as well as wall heat flux and wall mass flux are discussed. Comparison with published results is presented.  相似文献   

10.
Summary The purpose of the paper is to consider the stability for wavelike disturbances in the steady, twodimensional, laminar boundary layer of a magnetic field, which is applied uniformly normal to the flat plate. The results show that the critical Reynolds number (R c * ) increases remarkably with the characteristic parameter (). The increase of the critical Reynolds number depends not only on the shape parameter of the velocity distribution in the boundary layer but also on the peculiarity of the velocity profile. It is also found that the boundary layer holds itself laminar all over the flat plate, when the magnetic parameterN is greater than 1.25×10–7, then a reduction of the skin-frictin drag might be expeced.  相似文献   

11.
A viscous incompressible fluid between two plane boundaries is stratified by maintaining the planes at different temperatures. The upper plane moves with a uniform velocity. The suction/injection mechanism with constant injection velocity at the upper plane and suction velocity varying sinusoidally along the lower plane with a wave numberk is introduced at the boundaries. The steady linearised equations are solved using similarity variables for the velocity components. The wave numberk is shown to be effective in controlling the boundary layer thickness.  相似文献   

12.
The present article contains the numerical solution for steady flow of a micropolar fluid between two porous plates using finite element method. The micropolar fluid fills the space inside the porous plates when the rate of suction at one boundary is equal to the rate of injection at the other boundary. The results for the fluid velocity and microrotation are graphically presented and the influence of micropolar fluid parameter K and parameter R is discussed. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

13.
An analysis has been carried out to study heat transfer characteristics of an incompressible Newtonian electrically conducting and heat generating/absorbing fluid having temperature-dependent viscosity over a non-isothermal wedge in the presence of thermal radiation. The Rosseland approximation is used to describe the radiative heat flux in the energy equation. The wedge surface is assumed to be permeable so as to allow for possible wall suction or injection. The effects of viscous dissipation, Joule heating, stress work and thermal radiation are included in the model. The governing differential equations are derived and transformed using a non-similarity transformation. The transformed equations are solved numerically by applying a fifth-order Runge-Kutta-Fehlberg scheme with shooting technique. Favorable comparisons with previously published work on various special cases of the problem are obtained. Numerical results for the velocity and temperature profiles for a prescribed magnetic field parameter as well as the development of the local skin-friction coefficient and local Nusselt number with the magnetic field and radiation parameters are presented graphically and in tabulated form to elucidate the influence of the various physical parameters.  相似文献   

14.
An analysis is made of the steady shear flow of an incompressible viscous electrically conducting fluid past an electrically insulating porous flat plate in the presence of an applied uniform transverse magnetic field. It is shown that steady shear flow exists for suction at the plate only when the square of the suction parameter S is less than the magnetic parameter Q. In this case the velocity at a given point increases with increase in either the magnetic field or suction velocity. The shear stress at the plate increases with increase in either S or the free-stream shear-rate parameter σ1 or Q. The analysis further reveals that solution exists for steady shear flow past a porous flat plate subject to blowing only when the square of the blowing parameter S1 is less than Q. It is found that the induced magnetic field at a given location decreases with increase in Q. Further the wall shear stress decreases with increase in S1. No steady shear flow is possible for blowing at the plate when S12 > Q. Received: June 16, 2004; revised: October 24, 2004  相似文献   

15.
The simultaneous effects of suction and injection on tangential movement of a nonlinear power-law stretching surface governed by laminar boundary layer flow of a viscous and incompressible fluid beneath a non-uniform free with stream pressure gradient is considered. The self-similar flow is governed by Falkner-Skan equation, with transpiration parameter γ, wall slip velocity λ and stretching sheet (or pressure gradient) parameter β. The exact solution for β = −1 and three closed form asymptotic solutions for β large, large suction γ, and λ → 1 have also been presented. Dual solutions are found for β = −1 for each value of the transpiration parameter, including the non-permeable surface, for each prescribed value of the wall slip velocity λ. The large β asymptotic solution also dual with respect to wall slip velocity λ, but do not depend on suction and blowing. The critical values of γ, β and λ are obtained and their significance on the skin friction and velocity profiles is discussed. An approximate solution by integral method for a trial velocity profile is presented and results are compared with the exact solutions.  相似文献   

16.
Summary The heat transfer in the flow of a second-order fluid, obeying Coleman and Noll's constitutive equation based on the postulate of gradually fading memory, over a stretching sheet has been studied. The boundary layer characteristics of this flow have been obtained. The velocity boundary layer thickness decreases for increasing values of the parameterKC/v. The thermal boundary layer thickness decreases and the Nusselt numberNu x increases for increasing Prandtl numberP r orC.  相似文献   

17.
The two-dimensional, steady, laminar, forced and free convective boundary layer flow of a magnetic fluid over a semi-infinite vertical plate, under the action of a localized magnetic field, is numerically studied. The magnetic fluid is considered to be water-based with temperature dependent viscosity and thermal conductivity. The study of the boundary layer is separated into two cases. In case I the boundary layer is studied near the leading edge, where it is dominated by the large viscous forces, whereas in case II the boundary layer is studied far from the leading edge of the plate where the effects of buoyancy forces increase. The numerical solution, for these two different cases, is obtained by an efficient numerical technique based on the common finite difference method. Numerical calculations are carried out for the value of Prandl number Pr =  49.832 (water-based magnetic fluid) and for different values of the dimensionless parameters entering into the problem and especially for the magnetic parameter Mn, the viscosity/temperature parameter Θ r and the thermal/conductivity parameter S*. The analysis of the obtained results show that the flow field is influenced by the application of the magnetic field as well as by the variation of the viscosity and the thermal conductivity of the fluid with temperature. It is hoped that they could be interesting for engineering applications.  相似文献   

18.
研究不可压缩粘性导电流体,流过半无限竖直可渗透平板时,将其偏微分形式的流动和传热的基本控制方程,应用适当的相似变换,简化为非线性的常微分方程组.对两种抽吸参数:大的和小的抽吸参数,采用摄动法得到变换后方程的近似解.数值结果表明,随着磁场参数和抽吸参数的增大,任意点的速度场在减小;磁场参数的影响,引起热边界层厚度的增大;速度和温度场随着热汇参数的增大而减小.  相似文献   

19.
Certain solutions of Magnetohydrodynamic boundary layer equations for a flat plate with a transverse magnetic field fixed relative to the fluid have been obtained using a power-series method given by Hassan. This power series solution has all the desirable qualities of Görtler series and, in addition, its zeroth order term which is governed by a non-linear total differential equation can be given in closed form. The first order term governed by a linear total differential equation has been integrated numerically. The results are tabulated for various values of S, the interaction parameter. The results show a decrease in the boundary layer thickness with a consequent increase in skin friction as the strength of magnetic field is increased.  相似文献   

20.
The problem of steady laminar magnetohydrodynamic (MHD) mixed convection heat transfer about a vertical plate is studied numerically, taking into account the effects of Ohmic heating and viscous dissipation. A uniform magnetic field is applied perpendicular to the plate. The resulting governing equations are transformed into the non-similar boundary layer equations and solved using the Keller box method. Both the aiding-buoyancy mode and the opposing-buoyancy mode of the mixed convection are examined. The velocity and temperature profiles as well as the local skin friction and local heat transfer parameters are determined for different values of the governing parameters, mainly the magnetic parameter, the Richardson number, the Eckert number and the suction/injection parameter, fw. For some specific values of the governing parameters, the results agree very well with those available in the literature. Generally, it is determined that the local skin friction coefficient and the local heat transfer coefficient increase owing to suction of fluid, increasing the Richardson number, Ri (i.e. the mixed convection parameter) or decreasing the Eckert number. This trend reverses for blowing of fluid and decreasing the Richardson number or decreasing the Eckert number. It is disclosed that the value of Ri determines the effect of the magnetic parameter on the momentum and heat transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号