首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we study integral operators of the form $$T\,f\left( x \right) = \int {k_1 \left( {x - a_1 y} \right)k_2 \left( {x - a_2 y} \right)...k_m \left( {x - a_m y} \right)f\left( y \right)dy} ,$$ $$k_i \left( y \right) = \sum\limits_{j \in Z} {2^{\frac{{jn}}{{q_i }}} } \varphi _{i,j} \left( {2^j y} \right),\,1 \leqq q_i < \infty ,\frac{1}{{q_1 }} + \frac{1}{{q_2 }} + ... + \frac{1}{{q_m }} = 1 - r,$$ $0 \leqq r < 1$ , and $\varphi _{i,j}$ satisfying suitable regularity conditions. We obtain the boundedness of $T:L^p \left( {R^n } \right) \to T:L^q \left( {R^n } \right)$ for $1 < p < \frac{1}{r}$ and $\frac{1}{q} = \frac{1}{p} - r$ .  相似文献   

2.
Given certain n × n invertible matrices A 1, . . . , A m and 0 ≦ α < n, we obtain the \({H^{p(.)}(\mathbb{R}^n) \to L^{q(.)}(\mathbb{R}^n)}\) boundedness of the integral operator with kernel \({k(x, y) = |x - A_1y|^{-\alpha_1} . . . |x - A_my|^{-\alpha_m}}\) , where α 1 +  . . . + α m n ? α and p(.), q(.) are exponent functions satisfying log-Hölder continuity conditions locally and at infinity related by \({\frac{1}{q(.)} = \frac{1}{p(.)} - \frac{\alpha}{n}}\) . We also obtain the \({H^{p(.)}(\mathbb{R}^n) \to H^{q(.)}(\mathbb{R}^n)}\) boundedness of the Riesz potential operator.  相似文献   

3.
Let α and s be real numbers satisfying 0<s<α<n. We are concerned with the integral equation $$u(x)=\int_{R^n}\frac{u^p(y)}{|x-y|^{n-\alpha}|y|^s}dy, $$ where \(\frac{n-s}{n-\alpha}< p< \alpha^{*}(s)-1\) with \(\alpha^{*}(s)=\frac{2(n-s)}{n-\alpha}\) . We prove the nonexistence of positive solutions for the equation and establish the equivalence between the above integral equation and the following partial differential equation $$\begin{aligned} (-\Delta)^{\frac{\alpha}{2}}u(x)=|x|^{-s}u^p. \end{aligned}$$   相似文献   

4.
Let{Y_t,t=1,2,…} be independent random variables with continuous distribution functionsF_i(y).For any y,dencte s=F_t(y)=1/t sum from i=1 to t F_i(y).The empirical process is defind by t~(-1/2)R(s,t) whereR(s,t)=t(1/t sum from i=1 to t I_((?)_t(Y_i)≤s)-s)=sum from i=1 to t I_(?)-ts=sum from i=1 to t I_(?)-(?)_t(y)=sum from i=1 to t I_(Y_(?)≤y)-sum from i=1 to t F_i(y).The purpose of this paper is to investigate the asymptotic properties of the empirical processR(s,t).We shall prove that for some integer sequence {t_k},there is a (?)-process (?)(s,t) such that(?)|R(s,t_k)-(?)(s,t_k)|=O(t_k~(1/2)(log t_k)~(-1/4)(log log t_k)~(1/2))a.s.where (?)(s,t) is a two-parameter Gaussian process defined in §1.  相似文献   

5.
Our main purpose in this article is to establish a Gagliardo-Nirenberg type inequality in the critical Sobolev–Morrey space $H\mathcal{M}^{\frac{n}{p}}_{p,q}(\mathbb{R}^{n})$ with n∈? and 1<qp<∞, which coincides with the usual critical Sobolev space $H^{\frac{n}{p}}_{p}(\mathbb{R}^{n})$ in the case of q=p. Indeed, we shall show the following interpolation inequality. If q<p, there exists a positive constant C p,q depending only on p and q such that GN $$ \|f\|_{{\mathcal{M}}_{r,\frac{q}{p}r}} \leq C_{p,q}r\|f \|_{{\mathcal{M}}_{p,q}}^{\frac{p}{r}}\bigl\|(-\Delta)^{\frac{n}{2p}} f\bigr\|_{{\mathcal{M}}_{p,q}}^{1-\frac{p}{r}} $$ for all $u\in H\mathcal{M}^{\frac{n}{p}}_{p,q}( \mathbb{R}^{n})$ and for all pr<∞. In the case of q=p, that is, the case of the critical Sobolev space $H^{\frac{n}{p}}_{p}(\mathbb{R}^{n})$ , the corresponding inequality was obtained in Ogawa (Nonlinear Anal. 14:765–769, 1990), Ogawa-Ozawa (J. Math. Anal. Appl. 155:531–540, 1991) and Ozawa (J. Func. Anal. 127:259–269, 1995) with the growth order $r^{1-\frac{1}{p}}$ as r→∞. The inequality (GN) implies that the growth order as r→∞ is linear, which might look worse compared to the case of the critical Sobolev space. However, we investigate the optimality of the growth order and prove that this linear order is best-possible. Furthermore, as several applications of the inequality (GN), we shall obtain a Trudinger-Moser type inequality and a Brézis-Gallouët-Wainger type inequality in the critical Sobolev-Morrey space.  相似文献   

6.
Let \(\chi _0^n = \left\{ {X_t } \right\}_0^n \) be a martingale such that 0≦Xi≦1;i=0, …,n. For 0≦p≦1 denote by ? p n the set of all such martingales satisfying alsoE(X0)=p. Thevariation of a martingale χ 0 n is denoted byV 0 n and defined by \(V(\chi _0^n ) = E\left( {\sum {_{l = 0}^{n - 1} } \left| {X_{l + 1} - X_l } \right|} \right)\) . It is proved that $$\mathop {\lim }\limits_{n \to \infty } \left\{ {\mathop {Sup}\limits_{x_0^n \in \mathcal{M}_p^n } \left[ {\frac{1}{{\sqrt n }}V(\chi _0^n )} \right]} \right\} = \phi (p)$$ , where ?(p) is the well known normal density evaluated at itsp-quantile, i.e. $$\phi (p) = \frac{1}{{\sqrt {2\pi } }}\exp ( - \frac{1}{2}\chi _p^2 ) where \int_{ - \alpha }^{x_p } {\frac{1}{{\sqrt {2\pi } }}\exp ( - \frac{1}{2}\chi ^2 )} dx = p$$ . A sequence of martingales χ 0 n ,n=1,2, … is constructed so as to satisfy \(\lim _{n \to \infty } (1/\sqrt n )V(\chi _0^n ) = \phi (p)\) .  相似文献   

7.
The system of functional equations $$\forall p\varepsilon N_ + \forall (x,y)\varepsilon D:f(x,y) = \frac{1}{p}\sum\limits_{k = 0}^{p - 1} {f(x + ky,py)}$$ is suited to characterize the functions $$(x,y) \mapsto y^m B_m \left( {\frac{x}{y}} \right),m\varepsilon N,$$ B m means them-th Bernoulli-polynomial, $$(x,y) \mapsto \exp (x)y(\exp (y) - 1)^{ - 1}$$ (for these functionsD =R ×R +) and $$(x,y) \mapsto \log y + \Psi \left( {\frac{x}{y}} \right)(D = R_ + \times R_ + )$$ as those continuous solutions of this system which allow a certain separation of variables and take on some prescribed function values.  相似文献   

8.
Let V be a convex subset of a normed space and let a nondecreasing function α : [0, ∞) → [0, ∞) be given. A function ${f : V \rightarrow \mathbb{R}}$ is called α-midconvex if $$f\left(\frac{x+y}{2} \right)\leq \frac{f(x)+f(y)}{2}+\alpha(\|x-y\|) \quad \,{\rm for}\, x,y\in V.$$ It is known (Tabor in Control Cybern., 38/3:656–669, 2009) that if ${f : V \rightarrow \mathbb{R}}$ is α-midconvex, locally bounded above at every point of V then $$f(tx+(1-t)y)\leq tf(x)+(1-t)f(y)+P_\alpha(\|x-y\|) \quad \,{\rm for}\, x, y \in V,t \in [0,1],$$ where ${P_\alpha(r):=\sum_{k=0}^\infty \frac{1}{2^k} \alpha(2{\rm dist}(2^kr, \mathbb{Z}))}$ for ${r \in \mathbb{R}}$ . We show that under some additional assumptions the above estimation cannot be improved.  相似文献   

9.
We prove that weak-strong uniqueness holds for the $\beta $ -generalized surface quasi-geostrophic equation in the regular class $\nabla \theta \in L^{q}(0,T; L^{p}(\mathbb{R }^{2}))$ with $\frac{\alpha }{q}+\frac{2}{p}=\alpha +\beta -1$ , where $\alpha \in (0,1], \beta \in [1,2)$ and $\frac{2}{\alpha +\beta -1}<p<\infty $ .  相似文献   

10.
Suppose that Γ is a weighted graph or a discrete group. Let $m_{\alpha,R}(\lambda )=\big(1-\big|\frac{\lambda}{R}\big|\big)_{+}^{\alpha}$ be the Riesz means and let Δ be the discrete Laplacian on Γ. We prove that if D is the homogeneous dimension of Γ then the operator m α,R (Δ) is bounded on L p , provided that $\alpha>D|\frac{1}{p}-\frac{1}{2}|$ .  相似文献   

11.
This article mainly consists of two parts. In the first part the initial value problem (IVP) of the semilinear heat equation $$\begin{gathered} \partial _t u - \Delta u = \left| u \right|^{k - 1} u, on \mathbb{R}^n x(0,\infty ), k \geqslant 2 \hfill \\ u(x,0) = u_0 (x), x \in \mathbb{R}^n \hfill \\ \end{gathered} $$ with initial data in $\dot L_{r,p} $ is studied. We prove the well-posedness when $$1< p< \infty , \frac{2}{{k(k - 1)}}< \frac{n}{p} \leqslant \frac{2}{{k - 1}}, and r =< \frac{n}{p} - \frac{2}{{k - 1}}( \leqslant 0)$$ and construct non-unique solutions for $$1< p< \frac{{n(k - 1)}}{2}< k + 1, and r< \frac{n}{p} - \frac{2}{{k - 1}}.$$ In the second part the well-posedness of the avove IVP for k=2 with μ0?H s (? n ) is proved if $$ - 1< s, for n = 1, \frac{n}{2} - 2< s, for n \geqslant 2.$$ and this result is then extended for more general nonlinear terms and initial data. By taking special values of r, p, s, and u0, these well-posedness results reduce to some of those previously obtained by other authors [4, 14].  相似文献   

12.
For a badly approximable vector α, we obtain a sharp estimate for the rate of convergence in the space L p (0 < p < ∞) of the Birkhoff means $\frac{1}{n}\sum\nolimits_{s = 0}^{n = 1} {f(x + s\alpha )} $ for an absolutely continuous periodic function f and for functions in spaces of Bessel potentials.  相似文献   

13.
Let (T t ) t?≥ 0 be a bounded analytic semigroup on L p (Ω), with 1?<?p?<?∞. Let ?A denote its infinitesimal generator. It is known that if A and A * both satisfy square function estimates ${\bigl\|\bigl(\int_{0}^{\infty} \vert A^{\frac{1}{2}} T_t(x)\vert^2 {\rm d}t \bigr)^{\frac{1}{2}}\bigr\|_{L^p} \lesssim \|x\|_{L^p}}$ and ${\bigl\|\bigl(\int_{0}^{\infty} \vert A^{*\frac{1}{2}} T_t^*(y) \vert^2 {\rm d}t \bigr)^{\frac{1}{2}}\bigr\|_{L^{p^\prime}} \lesssim \|y\|_{L^{p^\prime}}}$ for ${x\in L^p(\Omega)}$ and ${y\in L^{p^\prime}(\Omega)}$ , then A admits a bounded ${H^{\infty}(\Sigma_\theta)}$ functional calculus for any ${\theta>\frac{\pi}{2}}$ . We show that this actually holds true for some ${\theta<\frac{\pi}{2}}$ .  相似文献   

14.
We prove a C 1,μ partial regularity result for minimizers of a non autonomous integral funcitional of the form $$\mathcal{F}(u; \Omega):=\int_{\Omega}f(x, Du)\ dx$$ under the so-called non standard growth conditions. More precisely we assume that $$c |z|^{p}\leq f(x ,z) \leq L (1+|z|^{q}),$$ for 2 ≤ pq and that D z f(x, z) is α-Hölder continuous with respect to the x-variable. The regularity is obtained imposing that ${\frac{p}{q} < \frac{n+\alpha}{n}}$ but without any assumption on the growth of ${D^{2}_{z}f}$ .  相似文献   

15.
Timofeev  N. M.  Khripunova  M. B. 《Mathematical Notes》2004,75(5-6):819-835
Suppose that g(n) is a real-valued additive function and τ(n) is the number of divisors of n. In this paper, we prove that there exists a constant C such that $\sup \limits_a \sum\limits_{n<N}{g(n) \in [a,a+1)} \tau(N-n) \leqslant C \frac{N \log N}{\sqrt{W(N)}},$ where $W(N) = 4 + \mathop {min}\limits_\lambda \left( {\lambda ^2 + \sum\limits_{p < N} {\frac{1}{p}} min(1,(g(p) - \lambda log p)^2 )} \right).$ . In particular, it follows from this result that $\mathop {\sup }\limits_a |\{ m,n:mn < N,g(N - mn) = a\} | \ll N\log N\left( {\sum\limits_{p < N,g\left( p \right) \ne 0} {(1/p)} } \right)^{ - 1/2} .$ The implicit constant is absolute.  相似文献   

16.
In this paper, we discuss the existence of solutions for irregular boundary value problems of nonlinear fractional differential equations with p-Laplacian operator $$\left \{ \begin{array}{l} {\phi}_p(^cD_{0+}^{\alpha}u(t))=f(t,u(t),u'(t)), \quad 0< t<1, \ 1< \alpha \leq2, \\ u(0)+(-1)^{\theta}u'(0)+bu(1)=\lambda, \qquad u(1)+(-1)^{\theta}u'(1)=\int_0^1g(s,u(s))ds,\\ \quad \theta=0,1, \ b \neq \pm1, \end{array} \right . $$ where \(^{c}D_{0+}^{\alpha}\) is the Caputo fractional derivative, ? p (s)=|s| p?2 s, p>1, \({\phi}_{p}^{-1}={\phi}_{q}\) , \(\frac {1}{p}+\frac{1}{q}=1\) and \(f: [0,1] \times\mathbb{R} \times\mathbb {R} \longrightarrow\mathbb{R}\) . Our results are based on the Schauder and Banach fixed point theorems. Furthermore, two examples are also given to illustrate the results.  相似文献   

17.
Timofeev  N. M.  Khripunova  M. B. 《Mathematical Notes》2004,76(1-2):244-263
Suppose that $${g\left( n \right)}$$ is an additive real-valued function, W(N) = 4+ $$\mathop {\min }\limits_\lambda $$ ( λ2 + $$\sum\limits_{p < N} {\frac{1}{2}} $$ min (1, ( g(p) - λlog p)2), E(N) = 4+1 $$\sum\limits_{\mathop {p < N,}\limits_{g(p) \ne 0} } {\frac{1}{p}.} $$ In this paper, we prove the existence of constants C1, C2 such that the following inequalities hold: $\mathop {\sup }\limits_a \geqslant \left| {\left\{ {n, m, k: m, k \in \mathbb{Z},n \in \mathbb{N},n + m^2 + k^2 } \right.} \right. = \left. {\left. {N,{\text{ }}g(n) \in [a,a + 1)} \right\}} \right| \leqslant \frac{{C_1 N}}{{\sqrt {W\left( N \right)} }},$ $\mathop {\sup }\limits_a \geqslant \left| {\left\{ {n, m, k: m, k \in \mathbb{Z},n \in \mathbb{N},n + m^2 + k^2 } \right.} \right. = \left. {\left. {N,{\text{ }}g(n) = a} \right\}} \right| \leqslant \frac{{C_2 N}}{{\sqrt {E\left( N \right)} }},$ . The obtained estimates are order-sharp.  相似文献   

18.
We study that the n-graph defined by a smooth map ${f:\Omega\subset\mathbb R^{n}\to \mathbb R^{m}, m\ge 2,}$ in ${\mathbb R^{m+n}}$ of the prescribed mean curvature and the Gauss image. Under the condition $$\Delta_f=\left[\text{det}\left(\delta_{ij}+\sum_\alpha{\frac {\partial {f^\alpha}}{\partial {x^i}}}{\frac {\partial {f^\alpha}}{\partial {x^j}}}\right)\right]^{\frac{1}{2}} < 2,$$ we derive the interior curvature estimates $$\sup_{D_R(x)}|B|^2\le{\frac{C}{R^2}}$$ when 2 ≤ n ≤ 5 with constant C depending on the given geometric data. If there is no dimension limitation we obtain $$\sup_{D_R(x)}|B|^2\le CR^{-a}\sup_{D_{2R}(x)}(2-\Delta_f)^{-\left({\frac{3}{2}}+{\frac{1}{s}}\right)},\quad s=\min(m, n)$$ with a < 1. If the image under the Gauss map is contained in a geodesic ball of the radius ${{\frac{\sqrt{2}}{4}}\pi}$ in G n,m we also derive corresponding estimates.  相似文献   

19.
We investigate the question of the regularized sums of part of the eigenvalues zn (lying along a direction) of a Sturm-Liouville operator. The first regularized sum is $$\sum\nolimits_{n = 1}^\infty {(z_n - n - \frac{{c_1 }}{n} + \frac{2}{\pi } \cdot z_n arctg \frac{1}{{z_n }} - \frac{2}{\pi }) = \frac{{B_2 }}{2} - c_1 \cdot \gamma + \int_1^\infty {\left[ {R(z) - \frac{{l_0 }}{{\sqrt z }} - \frac{{l_1 }}{z} - \frac{{l_2 }}{{z\sqrt z }}} \right]} } \sqrt z dz,$$ where the zn are eigenvalues lying along the positive semi-axis, z n 2 n, $$l_0 = \frac{\pi }{2}, l_1 = - \frac{1}{2}, l_2 = - \frac{1}{4}\int_0^\pi {q(x) dx,} c_1 = - \frac{2}{\pi }l_2 ,$$ , B2 is a Bernoulli number, γ is Euler's constant, and \(R(z)\) is the trace of the resolvent of a Sturm-Liouville operator.  相似文献   

20.
In 1945,B. Segre proved the following classical theorem: Every irrational ξ has an infinity of rational approximationsp/q such that (0) $$\frac{{ - 1}}{{q^2 \sqrt {1 + 4\tau } }}< \frac{p}{q} - \xi< \frac{\tau }{{q^2 \sqrt {1 + 4\tau } }},$$ where τ is any given non-negative real number. Segre conjectured that when τ≠0 and τ?1 is not an integer, inequalities (0) can be improved by replacing \(\sqrt {1 + 4\tau } \) and \(\sqrt {1 + 4\tau } /\tau \) with larger numbers. In this paper we prove that these two numbers can be replaced with the larger numbers \(\sqrt {1 + 4\tau } + 0.2\tau ^2 \{ \tau ^{ - 1} \} (1 - \{ \tau ^{ - 1} \} )\) and \(\sqrt {1 + 4\tau } /\tau + 0.2\tau ^2 \{ \tau ^{ - 1} \} (1 - \{ \tau ^{ - 1} \} )\) respectively, where {τ?1} is the fractional part of τ?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号