首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A mapping is called isotone if it is monotone increasing with respect to the order induced by a pointed closed convex cone. Finding the pointed closed convex generating cones for which the projection mapping onto the cone is isotone is a difficult problem which was analyzed in Isac and Németh (1986, 1990, 1992) [1], [2], [3], [4] and [5]. Such cones are called isotone projection cones. In particular it was shown that any isotone projection cone is latticial (Isac (1990) [2]). This problem is extended by replacing the projection mapping with continuous retractions onto the cone. By introducing the notion of sharp mappings, it is shown that a pointed closed convex generating cone is latticial if and only if there is a continuous retraction onto the cone whose complement is sharp. Several particular cases are considered and examples are given.  相似文献   

2.
《Optimization》2012,61(8):1117-1121
The subdual latticial cones in Hilbert spaces are characterized by the isotonicity of a generalization of the positive part mapping which can be expressed in terms of the metric projection only. Although Németh characterized the positive cone of Hilbert lattices with the metric projection and ordering only [A.B. Németh, Characterization of a Hilbert vector lattice by the metric projection onto its positive cone, J. Approx. Theory 123 (2) (2003), pp. 295–299.], this has been done for the first time for subdual latticial cones in this article. We also note that the normal generating pointed closed convex cones for which the projection onto the cone is isotone are subdual latticial cones, but there are subdual latticial cones for which the metric projection onto the cone is not isotone [G. Isac, A.B. Németh, Monotonicity of metric projections onto positive cones of ordered Euclidean spaces, Arch. Math. 46 (6) (1986), pp. 568–576; G. Isac, A.B. Néemeth, Every generating isotone projection cone is latticial and correct, J. Math. Anal. Appl. 147 (1) (1990), pp. 53–62; G. Isac, A.B. Németh, Isotone projection cones in Hilbert spaces and the complementarity problem, Boll. Un. Mat. Ital. B 7 (4) (1990), pp. 773–802; G. Isac, A.B. Németh, Projection methods, isotone projection cones, and the complementarity problem, J. Math. Anal. Appl. 153 (1) (1990), pp. 258–275; G. Isac, A.B. Németh, Isotone projection cones in Eucliden spaces, Ann. Sci. Math Québec 16 (1) (1992), pp. 35–52].  相似文献   

3.
The isotone projection cone, defined by G. Isac and A. B. Németh, is a closed pointed convex cone such that the order relation defined by the cone is preserved by the projection operator onto the cone. In this paper the coisotone cone will be defined as the polar of a generating isotone projection cone. Several equivalent inequality conditions for the coisotonicity of a cone in Euclidean spaces will be given. Thanks are due to A. B. Németh who draw the author’s attention on the relation of latticial cones generated by vectors with pairwise non-accute angles with the theory of isotone cones.  相似文献   

4.
In this paper we extend the notion of a Lorentz cone in a Euclidean space as follows: we divide the index set corresponding to the coordinates of points in two disjoint classes. By definition a point belongs to an extended Lorentz cone associated with this division, if the coordinates corresponding to one class are at least as large as the norm of the vector formed by the coordinates corresponding to the other class. We call a closed convex set isotone projection set with respect to a pointed closed convex cone if the projection onto the set is isotone (i.e., order preserving) with respect to the partial order defined by the cone. We determine the isotone projection sets with respect to an extended Lorentz cone. In particular, a Cartesian product between an Euclidean space and any closed convex set in another Euclidean space is such a set. We use this property to find solutions of general mixed complementarity problems recursively.  相似文献   

5.
In this paper, we first discuss the geometric properties of the Lorentz cone and the extended Lorentz cone. The self-duality and orthogonality of the Lorentz cone are obtained in Hilbert spaces. These properties are fundamental for the isotonicity of the metric projection with respect to the order, induced by the Lorentz cone. According to the Lorentz cone, the quasi-sublattice and the extended Lorentz cone are defined. We also obtain the representation of the metric projection onto cones in Hilbert quasi-lattices. As an application, solutions of the classic variational inequality problem and the complementarity problem are found by the Picard iteration corresponding to the composition of the isotone metric projection onto the defining closed and convex set and the difference in the identity mapping and the defining mapping. Our results generalize and improve various recent results obtained by many others.  相似文献   

6.
In this paper we present a recursion related to a nonlinear complementarity problem defined by a closed convex cone in a Hilbert space and a continuous mapping defined on the cone. If the recursion is convergent, then its limit is a solution of the nonlinear complementarity problem. In the case of isotone projection cones sufficient conditions are given for the mapping so that the recursion to be convergent.  相似文献   

7.
The solution of the complementarity problem defined by a mapping f:RnRn and a cone KRn consists of finding the fixed points of the operator PK°(I-f), where PK is the projection onto the cone K and I stands for the identity mapping. For the class of isotone projection cones (cones admitting projections isotone with respect to the order relation they generate) and f satisfying certain monotonicity properties, the solution can be obtained by iterative processes (see G. Isac, A.B. Németh, Projection methods, isotone projection cones, and the complementarity problem, J. Math. Anal. Appl. 153(1) (1990) 258-275 and S.Z. Németh, Iterative methods for nonlinear complementarity problems on isotone projection cones, J. Math. Anal. Appl. 350(1) (2009) 340-347). These algorithms require computing at each step the projection onto the cone K. In general, computing the projection mapping onto a cone K is a difficult and computationally expensive problem. In this note it is shown that the projection of an arbitrary point onto an isotone projection cone in Rn can be obtained by projecting recursively at most n-1 times into subspaces of decreasing dimension. This emphasizes the efficiency of the algorithms mentioned above and furnishes a handy tool for some problems involving special isotone projection cones, as for example the non-negative monotone cones occurring in reconstruction problems (see e.g. Section 5.13 in J. Dattorro, Convex Optimization and Euclidean Distance Geometry, Meboo, 2005, v2009.04.11).  相似文献   

8.
In this paper, as the extension of the isotonicity of the metric projection, the isotonicity characterizations with respect to two arbitrary order relations induced by cones of the metric projection operator are studied in Hilbert spaces, when one cone is a subdual cone and some relations between the two orders hold. Moreover, if the metric projection is not isotone in the whole space, we prove that the metric projection is isotone in some domains in both Hilbert lattices and Hilbert quasi-lattices. By using the isotonicity characterizations with respect to two arbitrary order relations of the metric projection, some solvability and approximation theorems for the complementarity problems are obtained. Our results generalize and improve various recent results in the field of study.  相似文献   

9.
Second-order cone (SOC) is a typical subclass of nonpolyhedral symmetric cones and plays a fundamental role in the second-order cone programming. It is already proven that the metric projection mapping onto SOC is strongly semismooth everywhere. However, whether such property holds for each slice of SOC has not been known yet. In this paper, by virtue of a new property of projection onto the closed and convex set with sufficiently smooth boundary, and some new results about projection onto axis-weighted SOC, we give an affirmative answer to this problem. Meanwhile, we also show Clarke’s generalized Jacobian and the directional derivative for the projection mapping onto a slice of SOC.  相似文献   

10.
《Optimization》2012,61(6):765-778
Isac and Németh [G. Isac and A. B. Németh, Projection methods, isotone projection cones and the complementarity problem, J. Math. Anal. Appl. 153 (1990), pp. 258–275] proved that solving a coincidence point equation (fixed point problem) in turn solves the corresponding implicit complementarity problem (nonlinear complementarity problem) and they exploited the isotonicity of the metric projection onto isotone projection cones to solve implicit complementarity problems (nonlinear complementarity problems) defined by these cones. In this article an iterative algorithm is studied in connection with an implicit complementarity problem. It is proved that if the sequence generated through the defined algorithm is convergent, then its limit is a solution of the coincidence point equation and thus solves the implicit complementarity problem. Sufficient conditions are given for this sequence to be convergent for implicit complementarity problems defined by isotone projection cones, extending the results of Németh [S.Z. Németh, Iterative methods for nonlinear complementarity problems on isotone projection cones, J. Math. Anal. Appl. 350 (2009), pp. 340–370]. Some existing concepts from the latter paper are extended to solve the problem of finding nonzero solutions of the implicit complementarity problem.  相似文献   

11.
This paper introduces the notion of projection onto a closed convex set associated with a convex function. Several properties of the usual projection are extended to this setting. In particular, a generalization of Moreau’s decomposition theorem about projecting onto closed convex cones is given. Several examples of distances and the corresponding generalized projections associated to particular convex functions are presented.  相似文献   

12.
In this paper some concepts of convex analysis are extended in an intrinsic way from the Euclidean space to the sphere. In particular, relations between convex sets in the sphere and pointed convex cones are presented. Several characterizations of the usual projection onto a Euclidean convex set are extended to the sphere and an extension of Moreau’s theorem for projection onto a pointed convex cone is exhibited.  相似文献   

13.
 In this paper we give a characterization of those reductive or solvable connected, not necessarily simply connected, Lie groups which permit a non-degenerate group order. A non-degenerate group ordering on G always defines a pointed generating invariant convex cone W in the Lie algebra of G, but not every such cone arises in this way. The cones that do are called global. To decide whether a given cone is global or not is a difficult problem which for simply connected groups and invariant cones has completely been solved by Gichev.  相似文献   

14.
 In this paper we give a characterization of those reductive or solvable connected, not necessarily simply connected, Lie groups which permit a non-degenerate group order. A non-degenerate group ordering on G always defines a pointed generating invariant convex cone W in the Lie algebra of G, but not every such cone arises in this way. The cones that do are called global. To decide whether a given cone is global or not is a difficult problem which for simply connected groups and invariant cones has completely been solved by Gichev. (Received 22 October 1999; in revised form 3 March 2000)  相似文献   

15.
This article studies some geometrical aspects of the semidefinite linear complementarity problem (SDLCP), which can be viewed as a generalization of the well-known linear complementarity problem (LCP). SDLCP is a special case of a complementarity problem over a closed convex cone, where the cone considered is the closed convex cone of positive semidefinite matrices. It arises naturally in the unified formulation of a pair of primal-dual semidefinite programming problems. In this article, we introduce the notion of complementary cones in the semidefinite setting using the faces of the cone of positive semidefinite matrices and show that unlike complementary cones induced by an LCP, semidefinite complementary cones need not be closed. However, under R 0-property of the linear transformation, closedness of all the semidefinite complementary cones induced by L is ensured. We also introduce the notion of a principal subtransformation with respect to a face of the cone of positive semidefinite matrices and show that for a self-adjoint linear transformation, strict copositivity is equivalent to strict semimonotonicity of each principal subtransformation. Besides the above, various other solution properties of SDLCP will be interpreted and studied geometrically.  相似文献   

16.
Let Ξ(H) denote the set of all nonzero closed convex cones in a finite dimensional Hilbert space H. Consider this set equipped with the bounded Pompeiu-Hausdorff metric δ. The collection of all pointed cones forms an open set in the metric space (Ξ(H),δ). One possible way of measuring the degree of pointedness of a cone K is by evaluating the distance from K to the set of all nonpointed cones. The number ρ(K) obtained in this way is called the radius of pointedness of the cone K. The evaluation of this number is, in general, a very cumbersome task. In this note, we derive a simple formula for computing ρ(K), and we propose also a method for constructing a nonpointed cone at minimal distance from K. Our results apply to any cone K whose maximal angle does not exceed 120°. Dedicated to Clovis Gonzaga on the occassion of his 60th birthday.  相似文献   

17.
Isac and Németh [G. Isac and A. B. Németh, Projection method, isotone projection cones and the complementarity problem, J. Math. Anal. App., 153, 258-275(1990)] proved that solving a coincidence point equation (fixed point problem) in turn solves the corresponding implicit complementarity problem (nonlinear complementarity problem) and they exploited the isotonicity of the metric projection onto isotone projection cones to solve implicit complementarity problems (nonlinear complementarity problems) defined by these cones. In this paper, the notion of *-isotone projection cones is employed and an iterative algorithm is presented in connection with an implicit complementarity problem on *-isotone projection cones. It is proved that if the sequence generated through the defined algorithm is convergent, then its limit is a solution of the coincidence point equation and thus solves the implicit complementarity problem. Sufficient conditions are given for this sequence to be convergent for implicit complementarity problems defined by *-isotone projection cones. The question of finding nonzero solutions of these problems is also studied.  相似文献   

18.
In this note,we prove that the efficient solution set for a vector optimization problem with acontinuous,star cone-quasiconvex objective mapping is connected under the assumption that the ordering coneis a D-cone.A D-cone includes any closed convex pointed cones in a normed space which admits strictly positivecontinuous linear functionals.  相似文献   

19.
We consider two notions for the representations of convex cones G-representation and lifted-G-representation. The former represents a convex cone as a slice of another; the latter allows in addition, the usage of auxiliary variables in the representation. We first study the basic properties of these representations. We show that some basic properties of convex cones are invariant under one notion of representation but not the other. In particular, we prove that lifted-G-representation is closed under duality when the representing cone is self-dual. We also prove that strict complementarity of a convex optimization problem in conic form is preserved under G-representations. Then we move to study efficiency measures for representations. We evaluate the representations of homogeneous convex cones based on the “smoothness” of the transformations mapping the central path of the representation to the central path of the represented optimization problem. Research of the first author was supported in part by a grant from the Faculty of Mathematics, University of Waterloo and by a Discovery Grant from NSERC. Research of the second author was supported in part by a Discovery Grant from NSERC and a PREA from Ontario, Canada.  相似文献   

20.
We introduce the concept of a conical zeta value as a geometric generalization of a multiple zeta value in the context of convex cones. The quasi-shuffle and shuffle relations of multiple zeta values are generalized to open cone subdivision and closed cone subdivision relations respectively for conical zeta values. In order to achieve the closed cone subdivision relation, we also interpret linear relations among fractions as subdivisions of decorated closed cones. As a generalization of the double shuffle relation of multiple zeta values, we give the double subdivision relation of conical zeta values and formulate the extended double subdivision relation conjecture for conical zeta values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号