首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A Cayley graph F = Cay(G, S) of a group G with respect to S is called a circulant digraph of order pk if G is a cyclic group of the same order. Investigated in this paper are the normality conditions for arc-transitive circulant (di)graphs of order p^2 and the classification of all such graphs. It is proved that any connected arc-transitive circulant digraph of order p^2 is, up to a graph isomorphism, either Kp2, G(p^2,r), or G(p,r)[pK1], where r|p- 1.  相似文献   

2.
A graph G is one-regular if its automorphism group Aut(G) acts transitively and semiregularly on the arc set. A Cayley graph Cay(Г, S) is normal if Г is a normal subgroup of the full automorphism group of Cay(Г, S). Xu, M. Y., Xu, J. (Southeast Asian Bulletin of Math., 25, 355-363 (2001)) classified one-regular Cayley graphs of valency at most 4 on finite abelian groups. Marusic, D., Pisanski, T. (Croat. Chemica Acta, 73, 969-981 (2000)) classified cubic one-regular Cayley graphs on a dihedral group, and all of such graphs turn out to be normal. In this paper, we classify the 4-valent one-regular normal Cayley graphs G on a dihedral group whose vertex stabilizers in Aut(G) are cyclic. A classification of the same kind of graphs of valency 6 is also discussed.  相似文献   

3.
Suppose F is a field, and n, p are integers with 1 ≤ p 〈 n. Let Mn(F) be the multiplicative semigroup of all n × n matrices over F, and let M^Pn(F) be its subsemigroup consisting of all matrices with rank p at most. Assume that F and R are subsemigroups of Mn(F) such that F M^Pn(F). A map f : F→R is called a homomorphism if f(AB) = f(A)f(B) for any A, B ∈F. In particular, f is called an endomorphism if F = R. The structure of all homomorphisms from F to R (respectively, all endomorphisms of Mn(F)) is described.  相似文献   

4.
LI  ZHENG-XING HAI  JIN-KE 《东北数学》2011,(3):227-233
Let G be a finite group, H ≤ G and R be a commutative ring with an identity 1R. Let CRG(H)={α ∈ RG|αh = hα for all h ∈ H), which is called the centralizer subalgebra of H in RG. Obviously, if H=G then CRG(H) is just the central subalgebra Z(RG) of RG. In this note, we show that the set of all H- conjugacy class sums of G forms an R-basis of CRG(H). Furthermore, let N be a normal subgroup of G and γthe natural epimorphism from G to G to G/N. Then γ induces an epimorphism from RG to RG, also denoted by % We also show that if R is a field of characteristic zero, then γ induces an epimorphism from CRG(H) to CRG(H), that is, 7(CRG(H)) = CRG(H).  相似文献   

5.
Let G be a finite group. A Cayley graph over G is a simple graph whose automorphism group has a regular subgroup isomorphic to G. A Cayley graph is called a CI-graph(Cayley isomorphism) if its isomorphic images are induced by automorphisms of G. A well-known result of Babai states that a Cayley graph Γ of G is a CI-graph if and only if all regular subgroups of Aut(Γ) isomorphic to G are conjugate in Aut(Γ). A semi-Cayley graph(also called bi-Cayley graph by some authors) over G is a simple graph whose automorphism group has a semiregular subgroup isomorphic to G with two orbits(of equal size). In this paper, we introduce the concept of SCI-graph(semi-Cayley isomorphism)and prove a Babai type theorem for semi-Cayley graphs. We prove that every semi-Cayley graph of a finite group G is an SCI-graph if and only if G is cyclic of order 3. Also, we study the isomorphism problem of a special class of semi-Cayley graphs.  相似文献   

6.
Let Г be a simple connected graph and let G be a group of automorphisms of Г. Г is said to be (G, 2)-arc transitive if G is transitive on the 2-arcs of Г. It has been shown that there exists a family of non-quasiprimitive (PSU3(q), 2)-arc transitive graphs where q = 2^3m with m an odd integer. In this paper we investigate the case where q is an odd prime power.  相似文献   

7.
Let F be a saturated formation containing the class of supersolvable groups and let G be a finite group. The following theorems are shown: (1) G ∈ F if and only if there is a normal subgroup H such that G/H ∈ F and every maximal subgroup of all Sylow subgroups of H is either c-normal or s-quasinormally embedded in G; (2) G ∈F if and only if there is a soluble normal subgroup H such that G/H∈F and every maximal subgroup of all Sylow subgroups of F(H), the Fitting subgroup of H, is either e-normally or s-quasinormally embedded in G.  相似文献   

8.
A proper edge-k-coloring of a graph G is a mapping from E(G) to {1, 2,..., k} such that no two adjacent edges receive the same color. A proper edge-k-coloring of G is called neighbor sum distinguishing if for each edge uv ∈ E(G), the sum of colors taken on the edges incident to u is different from the sum of colors taken on the edges incident to v. Let χ_Σ'(G) denote the smallest value k in such a coloring of G. This parameter makes sense for graphs containing no isolated edges(we call such graphs normal). The maximum average degree mad(G) of G is the maximum of the average degrees of its non-empty subgraphs. In this paper, we prove that if G is a normal subcubic graph with mad(G) 5/2,then χ_Σ'(G) ≤ 5. We also prove that if G is a normal subcubic graph with at least two 2-vertices, 6 colors are enough for a neighbor sum distinguishing edge coloring of G, which holds for the list version as well.  相似文献   

9.
In this paper, a finite group G with IAut(G) : P(G)I ~- p or pq is determined, where P(G) is the power automorphism group of G, and p, q are distinct primes. Especially, we prove that a finite group G satisfies |Aut(G) : P(G)|= pq if and only if Aut(G)/P(G) ≌S3. Also, some other classes of finite groups are investigated and classified, which are necessary for the proof of our main results.  相似文献   

10.
OD-characterization of Almost Simple Groups Related to U3(5)   总被引:1,自引:0,他引:1  
Let G be a finite group with order |G|=p1^α1p2^α2……pk^αk, where p1 〈 p2 〈……〈 Pk are prime numbers. One of the well-known simple graphs associated with G is the prime graph (or Gruenberg- Kegel graph) denoted .by г(G) (or GK(G)). This graph is constructed as follows: The vertex set of it is π(G) = {p1,p2,…,pk} and two vertices pi, pj with i≠j are adjacent by an edge (and we write pi - pj) if and only if G contains an element of order pipj. The degree deg(pi) of a vertex pj ∈π(G) is the number of edges incident on pi. We define D(G) := (deg(p1), deg(p2),..., deg(pk)), which is called the degree pattern of G. A group G is called k-fold OD-characterizable if there exist exactly k non- isomorphic groups H such that |H| = |G| and D(H) = D(G). Moreover, a 1-fold OD-characterizable group is simply called OD-characterizable. Let L := U3(5) be the projective special unitary group. In this paper, we classify groups with the same order and degree pattern as an almost simple group related to L. In fact, we obtain that L and L.2 are OD-characterizable; L.3 is 3-fold OD-characterizable; L.S3 is 6-fold OD-characterizable.  相似文献   

11.
《代数通讯》2013,41(3):1201-1211
Abstract

For a group G and a subset S of G which does not contain the identity of G, the Cayley digraph Cay(G, S) is called normal if R(G) is normal in Aut(Γ). In this paper, we investigate the normality of Cayley digraphs of finite simple groups with out-valency 2 and 3. We give several sufficient conditions for such Cayley digraphs to be normal. By using this result, we consider the digraphical regular representations of finite simple groups.  相似文献   

12.
Let G be a finite group. The prime graph Γ(G) of G is defined as follows. The vertices of Γ(G) are the primes dividing the order of G and two distinct vertices p and p′ are joined by an edge if there is an element in G of order pp′. We denote by k(Γ(G)) the number of isomorphism classes of finite groups H satisfying Γ(G) = Γ(H). Given a natural number r, a finite group G is called r-recognizable by prime graph if k(Γ(G)) =  r. In Shen et al. (Sib. Math. J. 51(2):244–254, 2010), it is proved that if p is an odd prime, then B p (3) is recognizable by element orders. In this paper as the main result, we show that if G is a finite group such that Γ(G) = Γ(B p (3)), where p > 3 is an odd prime, then \({G\cong B_p(3)}\) or C p (3). Also if Γ(G) = Γ(B 3(3)), then \({G\cong B_3(3), C_3(3), D_4(3)}\), or \({G/O_2(G)\cong {\rm Aut}(^2B_2(8))}\). As a corollary, the main result of the above paper is obtained.  相似文献   

13.
《Discrete Mathematics》2004,274(1-3):125-135
The classical Ramsey number r(m,n) can be defined as the smallest integer p such that in every two-coloring (R,B) of the edges of Kp, β(B)⩾m or β(R)⩾n, where β(G) denotes the independence number of a graph G. We define the upper domination Ramsey number u(m,n) as the smallest integer p such that in every two-coloring (R,B) of the edges of Kp, Γ(B)⩾m or Γ(R)⩾n, where Γ(G) is the maximum cardinality of a minimal dominating set of a graph G. The mixed domination Ramsey number v(m,n) is defined to be the smallest integer p such that in every two-coloring (R,B) of the edges of Kp, Γ(B)⩾m or β(R)⩾n. Since β(G)⩽Γ(G) for every graph G, u(m,n)⩽v(m,n)⩽r(m,n). We develop techniques to obtain upper bounds for upper domination Ramsey numbers of the form u(3,n) and mixed domination Ramsey numbers of the form v(3,n). We show that u(3,3)=v(3,3)=6, u(3,4)=8, v(3,4)=9, u(3,5)=v(3,5)=12 and u(3,6)=v(3,6)=15.  相似文献   

14.
Let Γ3 be an infinite regular tree of valence 3. There exist subgroups B of Aut (Γ3) which are 5-regular on Γ3, i.e., sharply transitive on the set of 5-arcs of Γ3. We prove that any two such subgroups are conjugate in Aut (Γ3). The pair (Γ3, B) is a universal 5-regular action in the sense that if (G, A) is a pair consisting of a cubical graph G and a 5-regular subgroup A of automorphisms of G then (G, A) can be “covered” by (Γ3, B) in a certain natural way.  相似文献   

15.
Let H be a definite quaternion algebra over Q with discriminant DH and R a maximal order of H. We denote by Gn a quaternionic unitary group and put Γn=Gn(Q)∩GL2n(R). Let Sκ(Γn) be the space of cusp forms of weight κ with respect to Γn on the quaternion half-space of degree n. We construct a lifting from primitive forms in Sk(SL2(Z)) to Sk+2n−2(Γn) and a lifting from primitive forms in Sk(Γ0(d)) to Sk+2(Γ2), where d is a factor of DH. These liftings are generalizations of the Maass lifting investigated by Krieg.  相似文献   

16.
For a commutative ring R with set of zero-divisors Z(R), the zero-divisor graph of R is Γ(R)=Z(R)−{0}, with distinct vertices x and y adjacent if and only if xy=0. In this paper, we show that Γ(T(R)) and Γ(R) are isomorphic as graphs, where T(R) is the total quotient ring of R, and that Γ(R) is uniquely complemented if and only if either T(R) is von Neumann regular or Γ(R) is a star graph. We also investigate which cardinal numbers can arise as orders of equivalence classes (related to annihilator conditions) in a von Neumann regular ring.  相似文献   

17.
Let R(Γ, G) be the variety of representations of a finitely generated group Γ in a simple complex algebraic group G. We establish some sufficient conditions for the image of the diagonal representation ϱ = (ϱ1, …, ϱt), ϱi ε R(Γ, G), to be dense in Gf in the complex topology (“weak approximation”).  相似文献   

18.
The Grundy number of a graph G, denoted by Γ(G), is the largest k such that G has a greedyk-colouring, that is a colouring with k colours obtained by applying the greedy algorithm according to some ordering of the vertices of G. In this paper, we study the Grundy number of the lexicographic and cartesian products of two graphs in terms of the Grundy numbers of these graphs.Regarding the lexicographic product, we show that Γ(GΓ(H)≤Γ(G[H])≤2Γ(G)−1(Γ(H)−1)+Γ(G). In addition, we show that if G is a tree or Γ(G)=Δ(G)+1, then Γ(G[H])=Γ(GΓ(H). We then deduce that for every fixed c≥1, given a graph G, it is CoNP-Complete to decide if Γ(G)≤c×χ(G) and it is CoNP-Complete to decide if Γ(G)≤c×ω(G).Regarding the cartesian product, we show that there is no upper bound of Γ(GH) as a function of Γ(G) and Γ(H). Nevertheless, we prove that Γ(GH)≤Δ(G)⋅2Γ(H)−1+Γ(H).  相似文献   

19.
Yanfeng Luo 《Discrete Mathematics》2009,309(20):5943-1987
Let G be a finite group and A a nonempty subset (possibly containing the identity element) of G. The Bi-Cayley graph X=BC(G,A) of G with respect to A is defined as the bipartite graph with vertex set G×{0,1} and edge set {{(g,0),(sg,1)}∣gG,sA}. A graph Γ admitting a perfect matching is called n-extendable if ∣V(Γ)∣≥2n+2 and every matching of size n in Γ can be extended to a perfect matching of Γ. In this paper, the extendability of Bi-Cayley graphs of finite abelian groups is explored. In particular, 2-extendable and 3-extendable Bi-Cayley graphs of finite abelian groups are characterized.  相似文献   

20.
F-Sets in graphs     
A subset S of the vertex set of a graph G is called an F-set if every α?Γ(G), the automorphism group of G, is completely specified by specifying the images under α of all the points of S, and S has a minimum number of points. The number of points, k(G), in an F-set is an invariant of G, whose properties are studied in this paper. For a finite group Γ we define k(Γ) = max{k(G) | Γ(G) = Γ}. Graphs with a given Abelian group and given k-value (kk(Γ)) have been constructed. Graphs with a given group and k-value 1 are constructed which give simple proofs to the theorems of Frucht and Bouwer on the existence of graphs with given abstract/permutation groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号