首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we study a graph operation which produces what we call the “vertex envelope” GV from a graph G. We apply it to plane cubic graphs and investigate the hamiltonicity of the resulting graphs, which are also cubic. To this end, we prove a result giving a necessary and sufficient condition for the existence of hamiltonian cycles in the vertex envelopes of plane cubic graphs. We then use these conditions to identify graphs or classes of graphs whose vertex envelopes are either all hamiltonian or all non-hamiltonian, paying special attention to bipartite graphs. We also show that deciding if a vertex envelope is hamiltonian is NP-complete, and we provide a polynomial algorithm for deciding if a given cubic plane graph is a vertex envelope.  相似文献   

2.
Ore presented a degree condition involving every pair of nonadjacent vertices for a graph to be hamiltonian. Fan [New sufficient conditions for cycles in graphs, J. Combin. Theory Ser. B 37 (1984) 221-227] showed that not all the pairs of nonadjacent vertices are required, but only the pairs of vertices at the distance two suffice. Bedrossian et al. [A generalization of Fan's condition for hamiltonicity, pancyclicity, and hamiltonian connectedness, Discrete Math. 115 (1993) 39-50] improved Fan's result involving the pairs of vertices contained in an induced claw or an induced modified claw. On the other hand, Matthews and Sumner [Longest paths and cycles in K1,3-free graphs, J. Graph Theory 9 (1985) 269-277] gave a minimum degree condition for a claw-free graph to be hamiltonian. In this paper, we give a new degree condition in an induced claw or an induced modified claw ensuring the hamiltonicity of graphs which extends both results of Bederossian et al. and Matthews and Sumner.  相似文献   

3.
Tough spiders     
Spider graphs are the intersection graphs of subtrees of subdivisions of stars. Thus, spider graphs are chordal graphs that form a common superclass of interval and split graphs. Motivated by previous results on the existence of Hamilton cycles in interval, split and chordal graphs, we show that every 3/2‐tough spider graph is hamiltonian. The obtained bound is best possible since there are (3/2 – ε)‐tough spider graphs that do not contain a Hamilton cycle. © 2007 Wiley Periodicals, Inc. J Graph Theory 56: 23–40, 2007  相似文献   

4.
Thomassen conjectured in 1986 that every 4-connected line graph is hamiltonian. In this paper, we show that 6-connected line graphs are hamiltonian, improving on an analogous result for 7-connected line graphs due to Zhan in 1991. Our result implies that every 6-connected claw-free graph is hamiltonian.  相似文献   

5.
The decision whether a graph is hamiltonian or not is known to be an NP-complete problem. The importance of this kind of problem motivate several researchers in heuristics development. However, problems arise in the evaluating of this heuristics, more often because it is difficult to produce independent data. In this paper we develop methods to produce non hamiltonian graphs, based on independence subsets and toughness arguments. We also present a family of non hamiltonian graphs with strong restrictions, that is, planar 1-tough non hamiltonan graphs with no separation triangles.  相似文献   

6.
The toughness of a (noncomplete) graph G is the minimum value of t for which there is a vertex cut A whose removal yields components. Determining toughness is an NP‐hard problem for general input graphs. The toughness conjecture of Chvátal, which states that there exists a constant t such that every graph on at least three vertices with toughness at least t is hamiltonian, is still open for general graphs. We extend some known toughness results for split graphs to the more general class of 2K2‐free graphs, that is, graphs that do not contain two vertex‐disjoint edges as an induced subgraph. We prove that the problem of determining toughness is polynomially solvable and that Chvátal's toughness conjecture is true for 2K2‐free graphs.  相似文献   

7.
Implicit-degrees and circumferences   总被引:2,自引:0,他引:2  
In this paper, we introduce a new concept — implicit-degrees of vertices of graphs. Related to this concept, a new definition for the closure of a graph is introduced. This closure is obtained by recursively joining pairs of nonadjacent vertices whose implicit-degree sum is at least the order of the graph. A criterion for deciding whether a graph is hamiltonian from its closure is obtained. Two other important results concerning the implicit-degrees of vertices and circumferences of graphs are presented.  相似文献   

8.
A (di)graph is supereulerian if it contains a spanning eulerian sub(di)graph. This property is a relaxation of hamiltonicity. Inspired by this analogy with hamiltonian cycles and by similar results in supereulerian graph theory, we analyze a number of sufficient Ore type conditions for a digraph to be supereulerian. Furthermore, we study the following conjecture due to Thomassé and the first author: if the arc‐connectivity of a digraph is not smaller than its independence number, then the digraph is supereulerian. As a support for this conjecture we prove it for digraphs that are semicomplete multipartite or quasitransitive and verify the analogous statement for undirected graphs.  相似文献   

9.
The connected forbidden subgraphs and pairs of connected forbidden subgraphs that imply a 2-connected graph is hamiltonian have been characterized by Bedrossian [Forbidden subgraph and minimum degree conditions for hamiltonicity, Ph.D. Thesis, Memphis State University, 1991], and extensions of these excluding graphs for general graphs of order at least 10 were proved by Faudree and Gould [Characterizing forbidden pairs for Hamiltonian properties, Discrete Math. 173 (1997) 45-60]. In this paper a complete characterization of connected forbidden subgraphs and pairs of connected forbidden subgraphs that imply a 2-connected graph of order at least 10 has a 2-factor will be proved. In particular it will be shown that the characterization for 2-factors is very similar to that for hamiltonian cycles, except there are seven additional pairs. In the case of graphs of all possible orders, there are four additional forbidden pairs not in the hamiltonian characterization, but a claw is part of each pair.  相似文献   

10.
在文献[3]中介绍了一个新的图类-P3-支配图.这个图类包含所有的拟无爪图,因此也包含所有的无爪图.在本文中,我们证明了每一个点数至少是3的三角形连通的P3-支配图是哈密尔顿的,但有一个例外图K1,1,3.同时,我们也证明了k-连通的(k≥2)的P3-支配图是哈密尔顿的,如果an(G)≤k,但有两个例外图K1,1,3 and K2,3.  相似文献   

11.
The prism over a graph G is the Cartesian product GK2 of G with the complete graph K2. If G is hamiltonian, then GK2 is also hamiltonian but the converse does not hold in general. Having a hamiltonian prism is shown to be an interesting relaxation of being hamiltonian. In this article, we examine classical problems on hamiltonicity of graphs in the context of having a hamiltonian prism. © 2007 Wiley Periodicals, Inc. J Graph Theory 56: 249–269, 2007  相似文献   

12.
Almost all Cayley graphs are hamiltonian   总被引:3,自引:0,他引:3  
It has been conjectured that there is a hamiltonian cycle in every finite connected Cayley graph. In spite of the difficulty in proving this conjecture, we show that almost all Cayley graphs are hamiltonian. That is, as the order n of a groupG approaches infinity, the ratio of the number of hamiltonian Cayley graphs ofG to the total number of Cayley graphs ofG approaches 1.Supported by the National Natural Science Foundation of China, Xinjiang Educational Committee and Xinjiang University.  相似文献   

13.
A digraph is quasi-transitive if there is a complete adjacency between the inset and the outset of each vertex. Quasi-transitive digraphs are interseting because of their relation to comparability graphs. Specifically, a graph can be oriented as a quasi-transitive digraph if and only if it is a comparability graph. Quasi-transitive digraphs are also of interest as they share many nice properties of tournaments. Indeed, we show that every strongly connected quasi-transitive digraphs D on at least four vertices has two vertices v1 and v2 such that Dvi is strongly connected for i = 1, 2. A result of tournaments on the existence of a pair of arc-disjoint in- and out-branchings rooted at the same vertex can also be extended to quasi-transitive digraphs. However, some properties of tournaments, like hamiltonicity, cannot be extended directly to quasi-transitive digraphs. Therefore we characterize those quasi-transitive digraphs which have a hamiltonian cycle, respectively a hamiltonian path. We show the existence of highly connected quasi-transitive digraphs D with a factor (a collection of disjoint cycles covering the vertex set of D), which have a cycle of every length 3 ≦ k ≦ |V(D)| ? 1 through every vertex and yet they are not hamiltonian. Finally we characterize pancyclic and vertex pancyclic quasi-transitive digraphs. © 1995, John Wiley & Sons, Inc.  相似文献   

14.
A triangular grid graph is a finite induced subgraph of the infinite graph associated with the two-dimensional triangular grid. In 2000, Reay and Zamfirescu showed that all 2-connected, linearly-convex triangular grid graphs (with the exception of one of them) are hamiltonian. The only exception is a graph D which is the linearly-convex hull of the Star of David. We extend this result to a wider class of locally connected triangular grid graphs. Namely, we prove that all connected, locally connected triangular grid graphs (with the same exception of graph D) are hamiltonian. Moreover, we present a sufficient condition for a connected graph to be fully cycle extendable. We also show that the problem Hamiltonian Cycle is NP-complete for triangular grid graphs.  相似文献   

15.
An identifying code is a subset of vertices of a graph with the property that each vertex is uniquely determined (identified) by its nonempty neighbourhood within the identifying code. When only vertices out of the code are asked to be identified, we get the related concept of a locating-dominating set. These notions are closely related to a number of similar and well-studied concepts such as the one of a test cover. In this paper, we study the decision problems Identifying Code and Locating-Dominating Set (which consist in deciding whether a given graph admits an identifying code or a locating-dominating set, respectively, with a given size) and their minimization variants Minimum Identifying Code and Minimum Locating-Dominating Set. These problems are known to be NP-hard, even when the input graph belongs to a number of specific graph classes such as planar bipartite graphs. Moreover, it is known that they are approximable within a logarithmic factor, but hard to approximate within any sub-logarithmic factor. We extend the latter result to the case where the input graph is bipartite, split or co-bipartite: both problems remain hard in these cases. Among other results, we also show that for bipartite graphs of bounded maximum degree (at least 3), the two problems are hard to approximate within some constant factor, a question which was open. We summarize all known results in the area, and we compare them to the ones for the related problem Dominating Set. In particular, our work exhibits important graph classes for which Dominating Set is efficiently solvable, but Identifying Code and Locating-Dominating Set are hard (whereas in all previous works, their complexity was the same). We also introduce graph classes for which the converse holds, and for which the complexities of Identifying Code and Locating-Dominating Set differ.  相似文献   

16.
The fact that a cubic hamiltonian graph must have at least three spanning cycles suggests the question of whether every hamiltonian graph in which each point has degree at least 3 must have at least three spanning cycles. We answer this in the negative by exhibiting graphs on n=2m+1, m≥5, points in which one point has degree 4, all others have degree 3, and only two spanning cycles exist.  相似文献   

17.
The toughness of a graph G is defined as the largest real number t such that deletion of any s points from G results in a graph which is either connected or else has at most s/t components. Clearly, every hamiltonian graph is 1-tough. Conversely, we conjecture that for some t0, every t0-tough graph is hamiltonian. Since a square of a k-connected graph is always k-tough, a proof of this conjecture with t0 = 2 would imply Fleischner's theorem (the square of a block is hamiltonian). We construct an infinite family of (32)-tough nonhamiltonian graphs.  相似文献   

18.
F. Göring 《Discrete Mathematics》2010,310(9):1491-1494
In 1956, W.T. Tutte proved that every 4-connected planar graph is hamiltonian. Moreover, in 1997, D.P. Sanders extended this to the result that a 4-connected planar graph contains a hamiltonian cycle through any two of its edges. It is shown that Sanders’ result is best possible by constructing 4-connected maximal planar graphs with three edges a large distance apart such that any hamiltonian cycle misses one of them. If the maximal planar graph is 5-connected then such a construction is impossible.  相似文献   

19.
A number of results in hamiltonian graph theory are of the form “ implies ”, where is a property of graphs that is NP-hard and is a cycle structure property of graphs that is also NP-hard. An example of such a theorem is the well-known Chvátal–Erd s Theorem, which states that every graph G with κ is hamiltonian. Here κ is the vertex connectivity of G and is the cardinality of a largest set of independent vertices of G. In another paper Chvátal points out that the proof of this result is in fact a polynomial time construction that either produces a Hamilton cycle or a set of more than κ independent vertices. In this note we point out that other theorems in hamiltonian graph theory have a similar character. In particular, we present a constructive proof of a well-known theorem of Jung (Ann. Discrete Math. 3 (1978) 129) for graphs on 16 or more vertices.  相似文献   

20.
The problem of recognizing cover-incomparability graphs (i.e. the graphs obtained from posets as the edge-union of their covering and incomparability graph) was shown to be NP-complete in general [J. Maxová, P. Pavlíkova, A. Turzík, On the complexity of cover-incomparability graphs of posets, Order 26 (2009) 229-236], while it is for instance clearly polynomial within trees. In this paper we concentrate on (classes of) chordal graphs, and show that any cover-incomparability graph that is a chordal graph is an interval graph. We characterize the posets whose cover-incomparability graph is a block graph, and a split graph, respectively, and also characterize the cover-incomparability graphs among block and split graphs, respectively. The latter characterizations yield linear time algorithms for the recognition of block and split graphs, respectively, that are cover-incomparability graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号