首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A sequence r1, r2, …, r2n such that ri=rn+ i for all 1≤in is called a repetition. A sequence S is called non‐repetitive if no block (i.e. subsequence of consecutive terms of S) is a repetition. Let G be a graph whose edges are colored. A trail is called non‐repetitive if the sequence of colors of its edges is non‐repetitive. If G is a plane graph, a facial non‐repetitive edge‐coloring of G is an edge‐coloring such that any facial trail (i.e. a trail of consecutive edges on the boundary walk of a face) is non‐repetitive. We denote π′f(G) the minimum number of colors of a facial non‐repetitive edge‐coloring of G. In this article, we show that π′f(G)≤8 for any plane graph G. We also get better upper bounds for π′f(G) in the cases when G is a tree, a plane triangulation, a simple 3‐connected plane graph, a hamiltonian plane graph, an outerplanar graph or a Halin graph. The bound 4 for trees is tight. © 2010 Wiley Periodicals, Inc. J Graph Theory 66: 38–48, 2010  相似文献   

2.
The cyclic chromatic number χc(G) of a 2‐connected plane graph G is the minimum number of colors in an assigment of colors to the vertices of G such that, for every face‐bounding cycle f of G, the vertices of f have different colors. Plummer and Toft proved that, for a 3‐connected plane graph G, under the assumption Δ*(G) ≥ 42, where Δ*(G) is the size of a largest face of G, it holds that χc(G) ≤ Δ*(G) + 4. They conjectured that, if G is a 3‐connected plane graph, then χc>(G) ≤ Δ*(G) + 2. In the article the conjecture is proved for Δ*(G) ≥ 24. © 1999 John Wiley & Sons, Inc. J Graph Theory 30: 177–189, 1999  相似文献   

3.
We show that the following problem is NP complete: Let G be a cubic bipartite graph and f be a precoloring of a subset of edges of G using at most three colors. Can f be extended to a proper edge 3‐coloring of the entire graph G? This result provides a natural counterpart to classical Holyer's result on edge 3‐colorability of cubic graphs and a strengthening of results on precoloring extension of perfect graphs. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 156–160, 2003  相似文献   

4.
A polychromatic kcoloring of a plane graph G is an assignment of k colors to the vertices of G such that every face of G has all k colors on its boundary. For a given plane graph G, one seeks the maximum number k such that G admits a polychromatic k ‐coloring. In this paper, it is proven that every connected plane graph of order at least three, and maximum degree three, other than K4 or a subdivision of K4 on five vertices, admits a 3‐coloring in the regular sense (i.e., no monochromatic edges) that is also a polychromatic 3‐coloring. Our proof is constructive and implies a polynomial‐time algorithm. © 2009 Wiley Periodicals, Inc. J Graph Theory 60: 269‐283, 2009  相似文献   

5.
A proper edge coloring of a graph G without isolated edges is neighbor‐distinguishing if any two adjacent vertices have distinct sets consisting of colors of their incident edges. The neighbor‐distinguishing index of G is the minimum number ndi(G) of colors in a neighbor‐distinguishing edge coloring of G. Zhang, Liu, and Wang in 2002 conjectured that if G is a connected graph of order at least 6. In this article, the conjecture is verified for planar graphs with maximum degree at least 12.  相似文献   

6.
Let Qn be a hypercube of dimension n, that is, a graph whose vertices are binary n-tuples and two vertices are adjacent iff the corresponding n-tuples differ in exactly one position. An edge coloring of a graph H is called rainbow if no two edges of H have the same color. Let f(G,H) be the largest number of colors such that there exists an edge coloring of G with f(G,H) colors such that no subgraph isomorphic to H is rainbow. In this paper we start the investigation of this anti-Ramsey problem by providing bounds on f(Qn,Qk) which are asymptotically tight for k = 2 and by giving some exact results.  相似文献   

7.
An edge‐face coloring of a plane graph with edge set E and face set F is a coloring of the elements of EF so that adjacent or incident elements receive different colors. Borodin [Discrete Math 128(1–3):21–33, 1994] proved that every plane graph of maximum degree Δ?10 can be edge‐face colored with Δ + 1 colors. We extend Borodin's result to the case where Δ = 9. © 2010 Wiley Periodicals, Inc. J Graph Theory 66:332‐346, 2011  相似文献   

8.
An acyclic edge‐coloring of a graph is a proper edge‐coloring such that the subgraph induced by the edges of any two colors is acyclic. The acyclic chromatic index of a graph G is the smallest number of colors in an acyclic edge‐coloring of G. We prove that the acyclic chromatic index of a connected cubic graph G is 4, unless G is K4 or K3,3; the acyclic chromatic index of K4 and K3,3 is 5. This result has previously been published by Fiam?ík, but his published proof was erroneous.  相似文献   

9.
For any graph H, let Forb*(H) be the class of graphs with no induced subdivision of H. It was conjectured in [J Graph Theory, 24 (1997), 297–311] that, for every graph H, there is a function fH: ?→? such that for every graph G∈Forb*(H), χ(G)≤fH(ω(G)). We prove this conjecture for several graphs H, namely the paw (a triangle with a pendant edge), the bull (a triangle with two vertex‐disjoint pendant edges), and what we call a “necklace,” that is, a graph obtained from a path by choosing a matching such that no edge of the matching is incident with an endpoint of the path, and for each edge of the matching, adding a vertex adjacent to the ends of this edge. © 2011 Wiley Periodicals, Inc. J Graph Theory 71:49–68, 2012  相似文献   

10.
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a′(G). It was conjectured by Alon, Sudakov, and Zaks that for any simple and finite graph G, a′(G)?Δ + 2, where Δ=Δ(G) denotes the maximum degree of G. We prove the conjecture for connected graphs with Δ(G)?4, with the additional restriction that m?2n?1, where n is the number of vertices and m is the number of edges in G. Note that for any graph G, m?2n, when Δ(G)?4. It follows that for any graph G if Δ(G)?4, then a′(G)?7. © 2009 Wiley Periodicals, Inc. J Graph Theory 61: 192–209, 2009  相似文献   

11.
A proper edge coloring of a graph G is called acyclic if there is no 2‐colored cycle in G. The acyclic edge chromatic number of G, denoted by χ(G), is the least number of colors in an acyclic edge coloring of G. In this paper, we determine completely the acyclic edge chromatic number of outerplanar graphs. The proof is constructive and supplies a polynomial time algorithm to acyclically color the edges of any outerplanar graph G using χ(G) colors. © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 22–36, 2010  相似文献   

12.
A proper edge coloring of a graph G is called adjacent vertex-distinguishing acyclic edge coloring if there is no 2-colored cycle in G and the coloring set of edges incident with u is not equal to the coloring set of edges incident with v, where uvE(G). The adjacent vertex distinguishing acyclic edge chromatic number of G, denoted by x Aa (G), is the minimal number of colors in an adjacent vertex distinguishing acyclic edge coloring of G. If a graph G has an adjacent vertex distinguishing acyclic edge coloring, then G is called adjacent vertex distinguishing acyclic. In this paper, we obtain adjacent vertex-distinguishing acyclic edge coloring of some graphs and put forward some conjectures.  相似文献   

13.
Given a simple plane graph G, an edge‐face k‐coloring of G is a function ? : E(G) ∪ F(G) → {1,…,k} such that, for any two adjacent or incident elements a, bE(G) ∪ F(G), ?(a) ≠ ?(b). Let χe(G), χef(G), and Δ(G) denote the edge chromatic number, the edge‐face chromatic number, and the maximum degree of G, respectively. In this paper, we prove that χef(G) = χe(G) = Δ(G) for any 2‐connected simple plane graph G with Δ (G) ≥ 24. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

14.
An edge (vertex) colored graph is rainbow‐connected if there is a rainbow path between any two vertices, i.e. a path all of whose edges (internal vertices) carry distinct colors. Rainbow edge (vertex) connectivity of a graph G is the smallest number of colors needed for a rainbow edge (vertex) coloring of G. In this article, we propose a very simple approach to studying rainbow connectivity in graphs. Using this idea, we give a unified proof of several known results, as well as some new ones.  相似文献   

15.
《Journal of Graph Theory》2018,87(4):460-474
An odd k‐edge‐coloring of a graph G is a (not necessarily proper) edge‐coloring with at most k colors such that each nonempty color class induces a graph in which every vertex is of odd degree. Pyber (1991) showed that every simple graph is odd 4‐edge‐colorable, and Lužar et al. (2015) showed that connected loopless graphs are odd 5‐edge‐colorable, with one particular exception that is odd 6‐edge‐colorable. In this article, we prove that connected loopless graphs are odd 4‐edge‐colorable, with two particular exceptions that are respectively odd 5‐ and odd 6‐edge‐colorable. Moreover, a color class can be reduced to a size at most 2.  相似文献   

16.
An acyclic vertex coloring of a graph is a proper vertex coloring such that there are no bichromatic cycles. The acyclic chromatic number of G, denoted a(G), is the minimum number of colors required for acyclic vertex coloring of graph G. For a family F of graphs, the acyclic chromatic number of F, denoted by a(F), is defined as the maximum a(G) over all the graphs GF. In this paper we show that a(F)=8 where F is the family of graphs of maximum degree 5 and give a linear time algorithm to achieve this bound.  相似文献   

17.
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and it is denoted by a(G). From a result of Burnstein it follows that all subcubic graphs are acyclically edge colorable using five colors. This result is tight since there are 3-regular graphs which require five colors. In this paper we prove that any non-regular connected graph of maximum degree 3 is acyclically edge colorable using at most four colors. This result is tight since all edge maximal non-regular connected graphs of maximum degree 3 require four colors.  相似文献   

18.
A graph is f-choosable if for every collection of lists with list sizes specified by f there is a proper coloring using colors from the lists. We characterize f-choosable functions for block graphs (graphs in which each block is a clique, including trees and line graphs of trees). The sum choice number is the minimum over all choosable functions f of the sum of the sizes in f. The sum choice number of any graph is at most the number of vertices plus the number of edges. We show that this bound is tight for block graphs.Acknowledgments. Partially supported by a grant from the Reidler Foundation. The author would like to thank an anonymous referee for useful comments.  相似文献   

19.
An edge‐coloring of a graph G with colors is called an interval t‐coloring if all colors are used, and the colors of edges incident to any vertex of G are distinct and form an interval of integers. In 1991, Erd?s constructed a bipartite graph with 27 vertices and maximum degree 13 that has no interval coloring. Erd?s's counterexample is the smallest (in a sense of maximum degree) known bipartite graph that is not interval colorable. On the other hand, in 1992, Hansen showed that all bipartite graphs with maximum degree at most 3 have an interval coloring. In this article, we give some methods for constructing of interval non‐edge‐colorable bipartite graphs. In particular, by these methods, we construct three bipartite graphs that have no interval coloring, contain 20, 19, 21 vertices and have maximum degree 11, 12, 13, respectively. This partially answers a question that arose in [T.R. Jensen, B. Toft, Graph coloring problems, Wiley Interscience Series in Discrete Mathematics and Optimization, 1995, p. 204]. We also consider similar problems for bipartite multigraphs.  相似文献   

20.
A Gallai‐coloring of a complete graph is an edge coloring such that no triangle is colored with three distinct colors. Gallai‐colorings occur in various contexts such as the theory of partially ordered sets (in Gallai's original paper) or information theory. Gallai‐colorings extend 2‐colorings of the edges of complete graphs. They actually turn out to be close to 2‐colorings—without being trivial extensions. Here, we give a method to extend some results on 2‐colorings to Gallai‐colorings, among them known and new, easy and difficult results. The method works for Gallai‐extendible families that include, for example, double stars and graphs of diameter at most d for 2?d, or complete bipartite graphs. It follows that every Gallai‐colored Kn contains a monochromatic double star with at least 3n+ 1/4 vertices, a monochromatic complete bipartite graph on at least n/2 vertices, monochromatic subgraphs of diameter two with at least 3n/4 vertices, etc. The generalizations are not automatic though, for instance, a Gallai‐colored complete graph does not necessarily contain a monochromatic star on n/2 vertices. It turns out that the extension is possible for graph classes closed under a simple operation called equalization. We also investigate Ramsey numbers of graphs in Gallai‐colorings with a given number of colors. For any graph H let RG(r, H) be the minimum m such that in every Gallai‐coloring of Km with r colors, there is a monochromatic copy of H. We show that for fixed H, RG (r, H) is exponential in r if H is not bipartite; linear in r if H is bipartite but not a star; constant (does not depend on r) if H is a star (and we determine its value). © 2009 Wiley Periodicals, Inc. J Graph Theory 64: 233–243, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号