首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The so called dual parameterization method for quadratic semi-infinite programming (SIP) problems is developed recently. A dual parameterization algorithm is also proposed for numerical solution of such problems. In this paper, we present and improved adaptive algorithm for quadratic SIP problems with positive definite objective and multiple linear infinite constraints. In each iteration of the new algorithm, only a quadratic programming problem with a limited dimension and a limited number of constraints is required to be solved. Furthermore, convergence result is given. The efficiency of the new algorithm is shown by solving a number of numerical examples.  相似文献   

2.
Consider the class of linear-quadratic (LQ) optimal control problems with continuous linear state constraints, that is, constraints imposed on every instant of the time horizon. This class of problems is known to be difficult to solve numerically. In this paper, a computational method based on a semi-infinite programming approach is given. The LQ optimal control problem is formulated as a positive-quadratic infinite programming problem. This can be done by considering the control as the decision variable, while taking the state as a function of the control. After parametrizing the decision variable, an approximate quadratic semi-infinite programming problem is obtained. It is shown that, as we refine the parametrization, the solution sequence of the approximate problems converges to the solution of the infinite programming problem (hence, to the solution of the original optimal control problem). Numerically, the semi-infinite programming problems obtained above can be solved efficiently using an algorithm based on a dual parametrization method.  相似文献   

3.
In this paper we first establish a Lagrange multiplier condition characterizing a regularized Lagrangian duality for quadratic minimization problems with finitely many linear equality and quadratic inequality constraints, where the linear constraints are not relaxed in the regularized Lagrangian dual. In particular, in the case of a quadratic optimization problem with a single quadratic inequality constraint such as the linearly constrained trust-region problems, we show that the Slater constraint qualification (SCQ) is necessary and sufficient for the regularized Lagrangian duality in the sense that the regularized duality holds for each quadratic objective function over the constraints if and only if (SCQ) holds. A new theorem of the alternative for systems involving both equality constraints and two quadratic inequality constraints plays a key role. We also provide classes of quadratic programs, including a class of CDT-subproblems with linear equality constraints, where (SCQ) ensures regularized Lagrangian duality.  相似文献   

4.
We state a new implicit optimality criterion for convex semi-infinite programming (SIP) problems. This criterion does not require any constraint qualification and is based on concepts of immobile index and immobility order. Given a convex SIP problem with a continuum of constraints, we use an information about its immobile indices to construct a nonlinear programming (NLP) problem of a special form. We prove that a feasible point of the original infinite SIP problem is optimal if and only if it is optimal in the corresponding finite NLP problem. This fact allows us to obtain new efficient optimality conditions for convex SIP problems using known results of the optimality theory of NLP. To construct the NLP problem, we use the DIO algorithm. A comparison of the optimality conditions obtained in the paper with known results is provided.  相似文献   

5.
In the sequel of the work reported in Liu et al. (1999), in which a method based on a dual parametrization is used to solve linear-quadratic semi-infinite programming (SIP) problems, a sequential quadratic programming technique is proposed to solve nonlinear SIP problems. A merit function to measure progress toward the solution and a procedure to compute the penalty parameter are also proposed.  相似文献   

6.
7.
A convergent decomposition algorithm for support vector machines   总被引:1,自引:0,他引:1  
In this work we consider nonlinear minimization problems with a single linear equality constraint and box constraints. In particular we are interested in solving problems where the number of variables is so huge that traditional optimization methods cannot be directly applied. Many interesting real world problems lead to the solution of large scale constrained problems with this structure. For example, the special subclass of problems with convex quadratic objective function plays a fundamental role in the training of Support Vector Machine, which is a technique for machine learning problems. For this particular subclass of convex quadratic problem, some convergent decomposition methods, based on the solution of a sequence of smaller subproblems, have been proposed. In this paper we define a new globally convergent decomposition algorithm that differs from the previous methods in the rule for the choice of the subproblem variables and in the presence of a proximal point modification in the objective function of the subproblems. In particular, the new rule for sequentially selecting the subproblems appears to be suited to tackle large scale problems, while the introduction of the proximal point term allows us to ensure the global convergence of the algorithm for the general case of nonconvex objective function. Furthermore, we report some preliminary numerical results on support vector classification problems with up to 100 thousands variables.  相似文献   

8.
The attraction of dual trajectories of Newton’s method for the Lagrange system to critical Lagrange multipliers is analyzed. This stable effect, which has been confirmed by numerical practice, leads to the Newton-Lagrange method losing its superlinear convergence when applied to problems with irregular constraints. At the same time, available theoretical results are of “negative” character; i.e., they show that convergence to a noncritical multiplier is not possible or unlikely. In the case of a purely quadratic problem with a single constraint, a “positive” result is proved for the first time demonstrating that the critical multipliers are attractors for the dual trajectories. Additionally, the influence exerted by the attraction to critical multipliers on the convergence rate of direct and dual trajectories is characterized.  相似文献   

9.
Bounded knapsack sharing   总被引:1,自引:0,他引:1  
A bounded knapsack sharing problem is a maximin or minimax mathematical programming problem with one or more linear inequality constraints, an objective function composed of single variable continuous functions called tradeoff functions, and lower and upper bounds on the variables. A single constraint problem which can have negative or positive constraint coefficients and any type of continuous tradeoff functions (including multi-modal, multiple-valued and staircase functions) is considered first. Limiting conditions where the optimal value of a variable may be plus or minus infinity are explicitly considered. A preprocessor procedure to transform any single constraint problem to a finite form problem (an optimal feasible solution exists with finite variable values) is developed. Optimality conditions and three algorithms are then developed for the finite form problem. For piecewise linear tradeoff functions, the preprocessor and algorithms are polynomially bounded. The preprocessor is then modified to handle bounded knapsack sharing problems with multiple constraints. An optimality condition and algorithm is developed for the multiple constraint finite form problem. For multiple constraints, the time needed for the multiple constraint finite form algorithm is the time needed to solve a single constraint finite form problem multiplied by the number of constraints. Some multiple constraint problems cannot be transformed to multiple constraint finite form problems.  相似文献   

10.
Optimization problems involving a finite number of decision variables and an infinite number of constraints are referred to as semi-infinite programs (SIPs). Existing numerical methods for solving nonlinear SIPs make strong assumptions on the properties of the feasible set, e.g., convexity and/or regularity, or solve a discretized approximation which only guarantees a lower bound to the true solution value of the SIP. Here, a general, deterministic algorithm for solving semi-infinite programs to guaranteed global optimality is presented. A branch-and-bound (B&B) framework is used to generate convergent sequences of upper and lower bounds on the SIP solution value. The upper-bounding problem is generated by replacing the infinite number of real-valued constraints with a finite number of constrained inclusion bounds; the lower-bounding problem is formulated as a convex relaxation of a discretized approximation to the SIP. The SIP B&B algorithm is shown to converge finitely to –optimality when the subdivision and discretization procedures used to formulate the node subproblems are known to retain certain convergence characteristics. Other than the properties assumed by globally-convergent B&B methods (for finitely-constrained NLPs), this SIP algorithm makes only one additional assumption: For every minimizer x* of the SIP there exists a sequence of Slater points xn for which (cf. Section 5.4). Numerical results for test problems in the SIP literature are presented. The exclusion test and a modified upper-bounding problem are also investigated as heuristic approaches for alleviating the computational cost of solving a nonlinear SIP to guaranteed global optimality.  相似文献   

11.
When the follower's optimality conditions are both necessary and sufficient, the nonlinear bilevel program can be solved as a global optimization problem. The complementary slackness condition is usually the complicating constraint in such problems. We show how this constraint can be replaced by an equivalent system of convex and separable quadratic constraints. In this paper, we propose different methods for finding the global minimum of a concave function subject to quadratic separable constraints. The first method is of the branch and bound type, and is based on rectangular partitions to obtain upper and lower bounds. Convergence of the proposed algorithm is also proved. For computational purposes, different procedures that accelerate the convergence of the proposed algorithm are analysed. The second method is based on piecewise linear approximations of the constraint functions. When the constraints are convex, the problem is reduced to global concave minimization subject to linear constraints. In the case of non-convex constraints, we use zero-one integer variables to linearize the constraints. The number of integer variables depends only on the concave parts of the constraint functions.Parts of the present paper were prepared while the second author was visiting Georgia Tech and the University of Florida.  相似文献   

12.
In this paper, a class of finely discretized Semi-Infinite Programming (SIP) problems is discussed. Combining the idea of the norm-relaxed Method of Feasible Directions (MFD) and the technique of updating discretization index set, we present a new algorithm for solving the Discretized Semi-Infinite (DSI) problems from SIP. At each iteration, the iteration point is feasible for the discretized problem and an improved search direction is computed by solving only one direction finding subproblem, i.e., a quadratic program, and some appropriate constraints are chosen to reduce the computational cost. A high-order correction direction can be obtained by solving another quadratic programming subproblem with only equality constraints. Under weak conditions such as Mangasarian–Fromovitz Constraint Qualification (MFCQ), the proposed algorithm possesses weak global convergence. Moreover, the superlinear convergence is obtained under Linearly Independent Constraint Qualification (LICQ) and other assumptions. In the end, some elementary numerical experiments are reported.  相似文献   

13.
A new algorithm, the dual active set algorithm, is presented for solving a minimization problem with equality constraints and bounds on the variables. The algorithm identifies the active bound constraints by maximizing an unconstrained dual function in a finite number of iterations. Convergence of the method is established, and it is applied to convex quadratic programming. In its implementable form, the algorithm is combined with the proximal point method. A computational study of large-scale quadratic network problems compares the algorithm to a coordinate ascent method and to conjugate gradient methods for the dual problem. This study shows that combining the new algorithm with the nonlinear conjugate gradient method is particularly effective on difficult network problems from the literature.  相似文献   

14.
In Machine Learning algorithms, one of the crucial issues is the representation of the data. As the given data source become heterogeneous and the data are large-scale, multiple kernel methods help to classify “nonlinear data”. Nevertheless, the finite combinations of kernels are limited up to a finite choice. In order to overcome this discrepancy, a novel method of  “infinite”  kernel combinations is proposed with the help of infinite and semi-infinite programming regarding all elements in kernel space. Looking at all infinitesimally fine convex combinations of the kernels from the infinite kernel set, the margin is maximized subject to an infinite number of constraints with a compact index set and an additional (Riemann–Stieltjes) integral constraint due to the combinations. After a parametrization in the space of probability measures, it becomes semi-infinite. We adapt well-known numerical methods to our infinite kernel learning model and analyze the existence of solutions and convergence for the given algorithms. We implement our new algorithm called “infinite” kernel learning (IKL) on heterogenous data sets by using exchange method and conceptual reduction method, which are well known numerical techniques from solve semi-infinite programming. The results show that our IKL approach improves the classifaction accuracy efficiently on heterogeneous data compared to classical one-kernel approaches.  相似文献   

15.
A primal-dual version of the proximal point algorithm is developed for linearly constrained convex programming problems. The algorithm is an iterative method to find a saddle point of the Lagrangian of the problem. At each iteration of the algorithm, we compute an approximate saddle point of the Lagrangian function augmented by quadratic proximal terms of both primal and dual variables. Specifically, we first minimize the function with respect to the primal variables and then approximately maximize the resulting function of the dual variables. The merit of this approach exists in the fact that the latter function is differentiable and the maximization of this function is subject to no constraints. We discuss convergence properties of the algorithm and report some numerical results for network flow problems with separable quadratic costs.  相似文献   

16.
The new trust region subproblem with the conic model was proposed in 2005, and was divided into three different cases. The first two cases can be converted into a quadratic model or a convex problem with quadratic constraints, while the third one is a nonconvex problem. In this paper, first we analyze the nonconvex problem, and reduce it to two convex problems. Then we discuss some dual properties of these problems and give an algorithm for solving them. At last, we present an algorithm for solving the new trust region subproblem with the conic model and report some numerical examples to illustrate the efficiency of the algorithm.  相似文献   

17.
Z. Akbari 《Optimization》2017,66(9):1519-1529
In this paper, we present a nonsmooth trust region method for solving linearly constrained optimization problems with a locally Lipschitz objective function. Using the approximation of the steepest descent direction, a quadratic approximation of the objective function is constructed. The null space technique is applied to handle the constraints of the quadratic subproblem. Next, the CG-Steihaug method is applied to solve the new approximation quadratic model with only the trust region constraint. Finally, the convergence of presented algorithm is proved. This algorithm is implemented in the MATLAB environment and the numerical results are reported.  相似文献   

18.
We consider a quadratic optimal control problem on an infinite time interval with integral quadratic equality and inequality constraints. For this (generally, nonconvex) problem, we justify the Lagrange constraint removal principle and the duality relation. The obtained result is based on the general theory of extremal problems, namely, on necessary second-order extremum conditions.  相似文献   

19.
We propose an adaptive, constraint-reduced, primal-dual interior-point algorithm for convex quadratic programming with many more inequality constraints than variables. We reduce the computational effort by assembling, instead of the exact normal-equation matrix, an approximate matrix from a well chosen index set which includes indices of constraints that seem to be most critical. Starting with a large portion of the constraints, our proposed scheme excludes more unnecessary constraints at later iterations. We provide proofs for the global convergence and the quadratic local convergence rate of an affine-scaling variant. Numerical experiments on random problems, on a data-fitting problem, and on a problem in array pattern synthesis show the effectiveness of the constraint reduction in decreasing the time per iteration without significantly affecting the number of iterations. We note that a similar constraint-reduction approach can be applied to algorithms of Mehrotra’s predictor-corrector type, although no convergence theory is supplied.  相似文献   

20.
In this paper, we consider a class of optimal control problems which is governed by nonsmooth functional inequality constraints involving convolution. First, we transform it into an equivalent optimal control problem with smooth functional inequality constraints at the expense of doubling the dimension of the control variables. Then, using the Chebyshev polynomial approximation of the control variables, we obtain an semi-infinite quadratic programming problem. At last, we use the dual parametrization technique to solve the problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号