首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
In this paper, we consider the quadratic stabilizability via state feedback for a particular class of switched systems that evolve on a non-uniform time domain by introducing time scales theory. The system considered switches between a continuous-time subsystem with variable lengths and a discrete-time subsystem with variable discrete step sizes. Necessary and sufficient conditions are derived to guarantee the quadratic stability of this class of switched systems via a switching state feedback law based on the existence of a common positive definite matrix satisfying the quadratic stabilizability condition by considering that the two subsystems are unstable. By state feedback, we mean that the switching among subsystems depends on the system states. Current results for this kind of state switching feedback control are derived only for switched systems evolving on a continuous time domain or a discrete time domain with fixed step’s size. These results are not applicable for the particular class of switched systems where there is a mixing between the continuous and discrete dynamics. This motivates the derivation of a new and more general state feedback control law for switched systems in this work. A numerical example illustrating the results is presented.  相似文献   

2.
In this paper, we consider a dynamic optimization problem involving a general switched system that evolves by switching between several subsystems of nonlinear delay-differential equations. The optimization variables in this system consist of: (1) the times at which the subsystem switches occur; and (2) a set of system parameters that influence the subsystem dynamics. We first establish the existence of the partial derivatives of the system state with respect to both the switching times and the system parameters. Then, on the basis of this result, we show that the gradient of the cost function can be computed by solving the state system forward in time followed by a costate system backward in time. This gradient computation procedure can be combined with any gradient-based optimization method to determine the optimal switching times and parameters. We propose an effective optimization algorithm based on this idea. Finally, we consider three numerical examples, one involving the 1,3-propanediol fed-batch production process, to illustrate the effectiveness and applicability of the proposed algorithm.  相似文献   

3.
In this paper, we deal with stability analysis of a class of nonlinear switched discrete-time systems. Systems of the class appear in numerical simulation of continuous-time switched systems. Some linear matrix inequality type stability conditions, based on the common Lyapunov function approach, are obtained. It is shown that under these conditions the system remains stable for any switching law. The obtained results are applied to the analysis of dynamics of a discrete-time switched population model. Finally, a continuous state feedback control is proposed that guarantees the uniform ultimate boundedness of switched systems with uncertain nonlinearity and parameters.  相似文献   

4.
In this paper, we study the asymptotic stability of continuous-time positive switched linear systems for the case when each subsystem is only stable. By using the so-called “joint linear copositive Lyapunov function” (JLCLF) generalizing the common linear copositive Lyapunov function, we show that the system remains asymptotically stable under appropriate switching if it has a JLCLF. Then, the main result is extended to positive switched linear systems with time delay.  相似文献   

5.
Noise-induced phenomena characterise the nonlinear relaxation of nonequilibrium physical systems towards equilibrium states. Often, this relaxation process proceeds through metastable states and the noise can give rise to resonant phenomena with an enhancement of lifetime of these states or some coherent state of the condensed matter system considered. In this paper three noise induced phenomena, namely the noise enhanced stability, the stochastic resonant activation and the noise-induced coherence of electron spin, are reviewed in the nonlinear relaxation dynamics of three different systems of condensed matter: (i) a long-overlap Josephson junction (JJ) subject to thermal fluctuations and non-Gaussian, Lévy distributed, noise sources; (ii) a graphene-based Josephson junction subject to thermal fluctuations; (iii) electrons in a n-type GaAs crystal driven by a fluctuating electric field. In the first system, we focus on the switching events from the superconducting metastable state to the resistive state, by solving the perturbed stochastic sine-Gordon equation. Nonmonotonic behaviours of the mean switching time versus the noise intensity, frequency of the external driving, and length of the junction are obtained. Moreover, the influence of the noise induced solitons on the mean switching time behaviour is shown. In the second system, noise induced phenomena are observed, such as noise enhanced stability (NES) and stochastic resonant activation (SRA). In the third system, the spin polarised transport in GaAs is explored in two different scenarios, i.e. in the presence of Gaussian correlated fluctuations or symmetric dichotomous noise. Numerical results indicate an increase of the electron spin lifetime by rising the strength of the random fluctuating component. Furthermore, our findings for the electron spin depolarization time as a function of the noise correlation time point out (i) a non-monotonic behaviour with a maximum in the case of Gaussian correlated fluctuations, (ii) an increase up to a plateau in the case of dichotomous noise. The noise enhances the coherence of the spin relaxation process.  相似文献   

6.
We consider resonant triad interactions of gravity‐capillary waves and investigate in detail special resonant triads that exchange no energy during their interactions so that the wave amplitudes remain constant in time. After writing the resonance conditions in terms of two parameters (or two angles of wave propagation), we first identify a region in the two‐dimensional parameter space, where resonant triads can be always found, and then describe the variations of resonant wavenumbers and wave frequencies over the resonance region. Using the amplitude equations recovered from a Hamiltonian formulation for water waves, it is shown that any resonant triad inside the resonance region can interact without energy exchange if the initial wave amplitudes and relative phase satisfy the two conditions for fixed point solutions of the amplitude equations. Furthermore, it is shown that the symmetric resonant triad exchanging no energy forms a transversely modulated traveling wave field, which can be considered a two‐dimensional generalization of Wilton ripples.  相似文献   

7.
This paper is concerned with the event-triggered control of switched linear systems. The coupling of system switching and event-triggered communication raises two phenomena: (1) the update of controller cannot always catch up with the active subsystem; (2) the switching may lead to additional triggers. The first phenomenon is called the asynchronous switching induced by network communication and the second one brings great difficulty to avoid the Zeno behavior of event-triggered mechanism (ETM). To address the above problem, we propose a new ETM which contains the switching signal of models and controllers and the discontinuity of triggering error at switching time instants. A relative threshold strategy, combined with a jump function, is designed as a new threshold function. By introducing a compensation term, the linear feedback control law is extended to avoid the Zeno behavior of ETM and improve the solvability of control algorithm. Based on the proposed event-triggered control scheme, the exponential stabilization of switched systems is achieved with relaxed constraints on the triggering and switching conditions. The obtained results are validated by a numerical example.  相似文献   

8.
We consider control problems for linear systems of functional-differential equations with both continuous and discrete time variables. The goal of controlling the system under consideration is prescribed by a finite set of linear functionals. The number of these functionals is independent of the dimension of the system. We describe the subset of controls generated by a subsystem with the discrete time variable that solve the stated problems.  相似文献   

9.
Different from the existing mathematical models for switched systems, where the switching from one subsystem to another subsystem is finished instantly, in this paper it is assumed that the switching is a transfer process. Moreover, there exists a basic transfer subsystem such that in the transfer process, the transfer subsystem is active. Based on the model of switched systems under constrained switching, this paper studies the controllability of such systems with time delay in the control function. A necessary and sufficient condition for controllability of such systems is established. Finally, an example is given to illustrate the utility of our results.  相似文献   

10.
This paper deals with the attainable sets of linear periodic control systems. The asymptotic behavior of the attainable sets over a long time interval is investigated in terms of shapes of the sets. The shape of a set stands for the totality of all its images under nonsingular linear transformations. It is shown that there exist limits of the shape of attainable sets corresponding to time instants with the same residue modulo the period of the system and that the limit shapes are different if the system includes a stable subsystem.  相似文献   

11.
This paper introduces a system with switching multi-model structure which can generate chaos. Sub-models in this structure are fractional-order linear systems with any desired commensurate order less than 1. It shows that this system is capable of demonstrating chaotic behavior if its parameters and switching rule are suitably chosen. The structure of the proposed system is defined in a general form; consequently various chaotic attractors can be created by this system with different choices of order, parameters and switching rule. Numerical simulations illustrate behavior of the introduced system in some different situations.  相似文献   

12.
A predator–prey model was extended to include nonlinear harvesting of the predator guided by its population, such that harvesting is only implemented if the predator population exceeds an economic threshold. The proposed model is a nonsmooth dynamic system with switches between the original predator-prey model (free subsystem) and a model with nonlinear harvesting (harvesting subsystem). We initially examine the dynamics of both the free and the harvesting subsystems, and then we investigate the dynamics of the switching system using theories of nonsmooth systems. Theoretical results showed that the harvesting subsystem undergoes multiple bifurcations, including saddle-node, supercritical Hopf, Bogdanov–Takens and homoclinic bifurcations. The switching system not only retains all of the complex dynamics of the harvesting system but also exhibits much richer dynamics such as a sliding equilibrium, sliding cycle, boundary node (saddle point) bifurcation, boundary saddle-node bifurcation and buckling bifurcation. Both theoretical and numerical results showed that, by implementing predator population guided harvesting, the predator and prey population could coexist in more scenarios than those in which the predator may go extinct for the continuous harvesting regime. They could either stabilize at an equilibrium or oscillate periodically depending on the value of the economic threshold and the initial value of the system.  相似文献   

13.
We analyze the so-called Marginal Instability of linear switching systems, both in continuous and discrete time. This is a phenomenon of unboundedness of trajectories when the Lyapunov exponent is zero. We disprove two recent conjectures of Chitour, Mason and Sigalotti (2012) stating that for generic systems, the resonance is sufficient for marginal instability and for polynomial growth of the trajectories. The concept of resonance originated with the same authors is modified. A characterization of marginal instability under some mild assumptions on the system is provided. These assumptions can be verified algorithmically and are believed to be generic. Finally, we analyze possible types of fastest asymptotic growth of trajectories. An example of a marginally unstable pair of matrices with non-polynomial growth is given.  相似文献   

14.
Andrzej Buchacz 《PAMM》2011,11(1):195-196
The transverse vibrating mechatronic subsystem is considered. Integral parts of this system are: a continuous beam with known boundary conditions and a transducer, extorted by harmonic voltage excitation, to be perfectly bonded to the beam surface. Findings this article are dynamical characteristics of the discussed mechatronic and mechanical system to model them by hypergraphs. Research limitation is that the linear mechanical subsystem and linear electric subsystem of mechatronic system has been considered, however for this kind of systems the approach is sufficient. Practical implications of this researches was that global approach is presented, that means in the domain of frequency spectrum analysis. The methods of analysis and obtained results can be base of design and investigation for this type of mechatronic systems. Originality of this paper is that the mechatronic system created from mechanical and electric subsystems with electromechanical bondage has been considered. This approach is different from those considered so far because is it relies on application approximate methods of analysis of mechatronic subsystem and modeling the one by hypergraph [1-7]. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
In this paper we present some necessary and sufficient conditions for the stability of periodically switched discrete-time linear index-1 singular system, (PSSS). In particular, it is proved that, if at least one subsystem of a PSSS is asymptotically stable, then there is a switching rule, so that the whole system is also uniformly exponentially stable. Furthermore, for a periodically switched control system with no stable subsystems, there exist a switching rule and feedback matrices, such that the obtained PSSS is uniformly exponentially stable.  相似文献   

16.
揭示了基于非线性混沌理论含间隙的非线性局域共振结构的低频宽带形成机理,提出了一类含间隙非线性局域共振结构设计的新理念.在该间隙非线性局域共振系统中,产生了非线性混沌现象,且这种非线性运动可以成功地改变振动噪声中的频谱结构,当系统运动进入混沌状态时,线性谱能量大大削弱,变成了一个连续的宽频谱,进而有效隔离低频线谱.有限元计算结果表明,正是这个间隙引起的非线性混沌现象导致了低频宽带的产生,且理论分析和有限元分析结果高度一致.因此,这类含间隙非线性局域共振弹性超材料结构的设计新思想为局域共振弹性超材料的发展开辟了新天地,且基于非线性混沌理论的低频带隙的形成机理为减振降噪应用研究奠定了非常重要的理论基础.  相似文献   

17.
In this paper, a nonlinear enzyme-catalytic time-delayed switched dynamical system is considered to describe batch culture of glycerol bioconversion to 1,3-propanediol induced by Klebsiella pneumoniae. This system can not only predict the exponential growth phase but also the lag and the stationary growth phases of batch culture since it contains two switching times for representing the starting moment of lag growth phase and the time when the cell specified growth rate reaches the maximum. The biological robustness is expressed in terms of the expectation and variance of the relative deviation. Our aim is to identify the switching times. To this end, a robust parameter identification problem is formulated, where the switching times are decision variables to be chosen such that the biological robustness measure is optimized. This problem, which is governed by the nonlinear system, is subject to a quality constraint and continuous state inequality constraints. Using a hybrid time-scaling transformation to parameterize the switching times into new parameters, an equivalently robust parameter identification problem is investigated. The continuous state inequality constraints are approximated by a conventional inequality constraint, yielding a sequence of approximate robust parameter identification subproblems. The convergence analysis of this approximation is also investigated. Owing to the highly complex nature of these subproblems, a parallel algorithm, based on simulated annealing, is proposed to solve these subproblems. From an extensive simulation study, it is observed that the obtained optimal switching times are satisfactory.  相似文献   

18.
This paper investigates stability and stabilization of positive switched systems with mode-dependent average dwell time, which permits to each subsystem in the underlying systems to have its own average dwell time. First, by using the multiple linear copositive Lyapunov function, the stability analysis of continuous-time systems in the autonomous form is addressed based on the mode-dependent average dwell time switching strategy. Then, the stabilization of non-autonomous systems is considered. State-feedback controllers are constructed, and all the proposed conditions are solvable in terms of linear programming. The obtained results are also extended to discrete-time systems. Finally, the simulation examples are given to illustrate the correctness of the design. The switching strategy used in the paper seems to be more effective than the average dwell time switching by some comparisons.  相似文献   

19.
This contribution extends a numerical method for solving optimal control problems by dynamic programming to a class of hybrid dynamic systems with autonomous as well as controlled switching. The value function of the hybrid control system is calculated based on a full discretization of the state and input spaces. A bound for the error due to discretization is obtained from modeling the error as perturbation of the continuous dynamics and the cost terms. It is shown that the bound approaches zero and that the value function of the discretized variant converges to the value function of the original problem if the discretization parameters go to zero. The performance of a numerical scheme exploiting the discretized system is illustrated for two different examples treated previously in literature.  相似文献   

20.
研究了Duffing-Van der Pol振子的主参数共振响应及其时滞反馈控制问题.依平均法和对时滞反馈控制项Taylor展开的截断得到的平均方程表明,除参数激励的幅值和频率外,零解的稳定性只与原方程中线性项的系数和线性反馈有关,但周期解的稳定性还与原方程中非线性项的系数和非线性反馈有关.通过调整反馈增益和时滞,可以使不稳定的零解变得稳定.非零周期解可能通过鞍结分岔和Hopf分岔失去稳定性,但选择合适的反馈增益和时滞,可以避免鞍结分岔和Hopf分岔的发生.数值仿真的结果验证了理论分析的正确性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号