首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present a unified semiparametric Bayesian approach based on Markov random field priors for analyzing the dependence of multicategorical response variables on time, space and further covariates. The general model extends dynamic, or state space, models for categorical time series and longitudinal data by including spatial effects as well as nonlinear effects of metrical covariates in flexible semiparametric form. Trend and seasonal components, different types of covariates and spatial effects are all treated within the same general framework by assigning appropriate priors with different forms and degrees of smoothness. Inference is fully Bayesian and uses MCMC techniques for posterior analysis. The approach in this paper is based on latent semiparametric utility models and is particularly useful for probit models. The methods are illustrated by applications to unemployment data and a forest damage survey.  相似文献   

2.
Gaussian Markov random fields (GMRF) are important families of distributions for the modeling of spatial data and have been extensively used in different areas of spatial statistics such as disease mapping, image analysis and remote sensing. GMRFs have been used for the modeling of spatial data, both as models for the sampling distribution of the observed data and as models for the prior of latent processes/random effects; we consider mainly the former use of GMRFs. We study a large class of GMRF models that includes several models previously proposed in the literature. An objective Bayesian analysis is presented for the parameters of the above class of GMRFs, where explicit expressions for the Jeffreys (two versions) and reference priors are derived, and for each of these priors results on posterior propriety of the model parameters are established. We describe a simple MCMC algorithm for sampling from the posterior distribution of the model parameters, and study frequentist properties of the Bayesian inferences resulting from the use of these automatic priors. Finally, we illustrate the use of the proposed GMRF model and reference prior for studying the spatial variability of lip cancer cases in the districts of Scotland over the period 1975-1980.  相似文献   

3.
Methods for spatial cluster detection attempt to locate spatial subregions of some larger region where the count of some occurrences is higher than expected. Event surveillance consists of monitoring a region in order to detect emerging patterns that are indicative of some event of interest. In spatial event surveillance, we search for emerging patterns in spatial subregions.A well-known method for spatial cluster detection is Kulldorff’s [M. Kulldorff, A spatial scan statistic, Communications in Statistics: Theory and Methods 26 (6) (1997)] spatial scan statistic, which directly analyzes the counts of occurrences in the subregions. Neill et al. [D.B. Neill, A.W. Moore, G.F. Cooper, A Bayesian spatial scan statistic, Advances in Neural Information Processing Systems (NIPS) 18 (2005)] developed a Bayesian spatial scan statistic called BSS, which also directly analyzes the counts.We developed a new Bayesian-network-based spatial scan statistic, called BNetScan, which models the relationships among the events of interest and the observable events using a Bayesian network. BNetScan is an entity-based Bayesian network that models the underlying state and observable variables for each individual in a population.We compared the performance of BNetScan to Kulldorff’s spatial scan statistic and BSS using simulated outbreaks of influenza and cryptosporidiosis injected into real Emergency Department data from Allegheny County, Pennsylvania. It is an open question whether we can obtain acceptable results using a Bayesian network if the probability distributions in the network do not closely reflect reality, and thus, we examined the robustness of BNetScan relative to the probability distributions used to generate the data in the experiments. Our results indicate that BNetScan outperforms the other methods and its performance is robust relative to the probability distribution that is used to generate the data.  相似文献   

4.
Asymmetric spatial processes arise naturally in finance, economics, hydrology and ecology. For such processes, two different classes of models are considered in this paper. One of them, proposed by Majumdar and Paul (J Comput Graph Stat 25(3):727–747, 2016), is the Double Zero Expectile Normal (DZEXPN) process and the other is a version of the “skewed normal process”, proposed by Minozzo and Ferracuti (Chil J Stat 3:157–170, 2012), with closed skew normal multivariate marginal distributions. Both spatial models have useful properties in the sense that they are ergodic and stationary. As a brief treatise to test the sensitivity and flexibility of the new proposed DZEXPN model (Majumdar and Paul in J Comput Graph Stat 25(3):727–747, 2016), in relation to other skewed spatial processes in the literature using a Bayesian methodology, our results show that by adding measurement error to the DZEXPN model, a reasonably flexible model is obtained, which is also computationally tractable than many others mentioned in the literature. Meanwhile, we develop a full-fledged Bayesian methodology for the estimation and prediction of the skew normal process proposed in Minozzo and Ferracuti (Chil J Stat 3:157–170, 2012). Specifically, a hierarchical model is used to describe the skew normal process and a computationally efficient MCMC scheme is employed to obtain samples from the posterior distributions. Under a Bayesian paradigm, we compare the performances of the aforementioned three different spatial processes and study their sensitivity and robustness based on simulated examples. We further apply them to a skewed data set on maximum annual temperature obtained from weather stations in Louisiana and Texas.  相似文献   

5.
We discuss a new class of spatially varying, simultaneous autoregressive (SVSAR) models motivated by interests in flexible, non-stationary spatial modelling scalable to higher dimensions. SVSAR models are hierarchical Markov random fields extending traditional SAR models. We develop Bayesian analysis using Markov chain Monte Carlo methods of SVSAR models, with extensions to spatio-temporal contexts to address problems of data assimilation in computer models. A motivating application in atmospheric science concerns global CO emissions where prediction from computer models is assessed and refined based on high-resolution global satellite imagery data. Application to synthetic and real CO data sets demonstrates the potential of SVSAR models in flexibly representing inhomogeneous spatial processes on lattices, and their ability to improve estimation and prediction of spatial fields. The SVSAR approach is computationally attractive in even very large problems; computational efficiencies are enabled by exploiting sparsity of high-dimensional precision matrices.  相似文献   

6.
Gaussian process models have been widely used in spatial statistics but face tremendous modeling and computational challenges for very large nonstationary spatial datasets. To address these challenges, we develop a Bayesian modeling approach using a nonstationary covariance function constructed based on adaptively selected partitions. The partitioned nonstationary class allows one to knit together local covariance parameters into a valid global nonstationary covariance for prediction, where the local covariance parameters are allowed to be estimated within each partition to reduce computational cost. To further facilitate the computations in local covariance estimation and global prediction, we use the full-scale covariance approximation (FSA) approach for the Bayesian inference of our model. One of our contributions is to model the partitions stochastically by embedding a modified treed partitioning process into the hierarchical models that leads to automated partitioning and substantial computational benefits. We illustrate the utility of our method with simulation studies and the global Total Ozone Matrix Spectrometer (TOMS) data. Supplementary materials for this article are available online.  相似文献   

7.
Bayesian networks (BNs) are widely used graphical models usable to draw statistical inference about directed acyclic graphs. We presented here Graph_sampler a fast free C language software for structural inference on BNs. Graph_sampler uses a fully Bayesian approach in which the marginal likelihood of the data and prior information about the network structure are considered. This new software can handle both the continuous as well as discrete data and based on the data type two different models are formulated. The software also provides a wide variety of structure prior which can depict either the global or local properties of the graph structure. Now based on the type of structure prior selected, we considered a wide range of possible values for the prior making it either informative or uninformative. We proposed a new and much faster jumping kernel strategy in the Metropolis–Hastings algorithm. The source C code distributed is very compact, fast, uses low memory and disk storage. We performed out several analyses based on different simulated data sets and synthetic as well as real networks to discuss the performance of Graph_sampler.  相似文献   

8.
This article proposes a four-pronged approach to efficient Bayesian estimation and prediction for complex Bayesian hierarchical Gaussian models for spatial and spatiotemporal data. The method involves reparameterizing the covariance structure of the model, reformulating the means structure, marginalizing the joint posterior distribution, and applying a simplex-based slice sampling algorithm. The approach permits fusion of point-source data and areal data measured at different resolutions and accommodates nonspatial correlation and variance heterogeneity as well as spatial and/or temporal correlation. The method produces Markov chain Monte Carlo samplers with low autocorrelation in the output, so that fewer iterations are needed for Bayesian inference than would be the case with other sampling algorithms. Supplemental materials are available online.  相似文献   

9.
We analyze output from six regional climate models (RCMs) via a spatial Bayesian hierarchical model. The primary advantage of this approach is that the statistical model naturally borrows strength across locations via a spatial model on the parameters of the generalized extreme value distribution. This is especially important in this application as the RCM output we analyze have extensive spatial coverage, but have a relatively short temporal record for characterizing extreme behavior. The hierarchical model we employ is also designed to be computationally efficient as we analyze RCM output for nearly 12000 locations. The aim of this analysis is to compare the extreme precipitation as generated by these RCMs. Our results show that, although the RCMs produce similar spatial patterns for the 100-year return level, their characterizations of extreme precipitation are quite different. Additionally, we examine the spatial behavior of the extreme value index and find differing spatial patterns for the point estimates for the RCMs. However, these differences may not be significant given the uncertainty associated with estimating this parameter.  相似文献   

10.
Recently there has been a lot of effort to model extremes of spatially dependent data. These efforts seem to be divided into two distinct groups: the study of max-stable processes, together with the development of statistical models within this framework; the use of more pragmatic, flexible models using Bayesian hierarchical models (BHM) and simulation based inference techniques. Each modeling strategy has its strong and weak points. While max-stable models capture the local behavior of spatial extremes correctly, hierarchical models based on the conditional independence assumption, lack the asymptotic arguments the max-stable models enjoy. On the other hand, they are very flexible in allowing the introduction of physical plausibility into the model. When the objective of the data analysis is to estimate return levels or kriging of extreme values in space, capturing the correct dependence structure between the extremes is crucial and max-stable processes are better suited for these purposes. However when the primary interest is to explain the sources of variation in extreme events Bayesian hierarchical modeling is a very flexible tool due to the ease with which random effects are incorporated in the model. In this paper we model a data set on Portuguese wildfires to show the flexibility of BHM in incorporating spatial dependencies acting at different resolutions.  相似文献   

11.
Inference for spatial generalized linear mixed models (SGLMMs) for high-dimensional non-Gaussian spatial data is computationally intensive. The computational challenge is due to the high-dimensional random effects and because Markov chain Monte Carlo (MCMC) algorithms for these models tend to be slow mixing. Moreover, spatial confounding inflates the variance of fixed effect (regression coefficient) estimates. Our approach addresses both the computational and confounding issues by replacing the high-dimensional spatial random effects with a reduced-dimensional representation based on random projections. Standard MCMC algorithms mix well and the reduced-dimensional setting speeds up computations per iteration. We show, via simulated examples, that Bayesian inference for this reduced-dimensional approach works well both in terms of inference as well as prediction; our methods also compare favorably to existing “reduced-rank” approaches. We also apply our methods to two real world data examples, one on bird count data and the other classifying rock types. Supplementary material for this article is available online.  相似文献   

12.
Our article considers the class of recently developed stochastic models that combine claims payments and incurred losses information into a coherent reserving methodology. In particular, we develop a family of hierarchical Bayesian paid–incurred claims models, combining the claims reserving models of Hertig (1985) and Gogol (1993). In the process we extend the independent log-normal model of Merz and Wüthrich (2010) by incorporating different dependence structures using a Data-Augmented mixture Copula paid–incurred claims model.In this way the paper makes two main contributions: firstly we develop an extended class of model structures for the paid–incurred chain ladder models where we develop precisely the Bayesian formulation of such models; secondly we explain how to develop advanced Markov chain Monte Carlo sampling algorithms to make inference under these copula dependence PIC models accurately and efficiently, making such models accessible to practitioners to explore their suitability in practice. In this regard the focus of the paper should be considered in two parts, firstly development of Bayesian PIC models for general dependence structures with specialised properties relating to conjugacy and consistency of tail dependence across the development years and accident years and between Payment and incurred loss data are developed. The second main contribution is the development of techniques that allow general audiences to efficiently work with such Bayesian models to make inference. The focus of the paper is not so much to illustrate that the PIC paper is a good class of models for a particular data set, the suitability of such PIC type models is discussed in Merz and Wüthrich (2010) and Happ and Wüthrich (2013). Instead we develop generalised model classes for the PIC family of Bayesian models and in addition provide advanced Monte Carlo methods for inference that practitioners may utilise with confidence in their efficiency and validity.  相似文献   

13.
Conditional autoregressive (CAR) models have been extensively used for the analysis of spatial data in diverse areas, such as demography, economy, epidemiology and geography, as models for both latent and observed variables. In the latter case, the most common inferential method has been maximum likelihood, and the Bayesian approach has not been used much. This work proposes default (automatic) Bayesian analyses of CAR models. Two versions of Jeffreys prior, the independence Jeffreys and Jeffreys-rule priors, are derived for the parameters of CAR models and properties of the priors and resulting posterior distributions are obtained. The two priors and their respective posteriors are compared based on simulated data. Also, frequentist properties of inferences based on maximum likelihood are compared with those based on the Jeffreys priors and the uniform prior. Finally, the proposed Bayesian analysis is illustrated by fitting a CAR model to a phosphate dataset from an archaeological region.  相似文献   

14.
In count data regression there can be several problems that prevent the use of the standard Poisson log‐linear model: overdispersion, caused by unobserved heterogeneity or correlation, excess of zeros, non‐linear effects of continuous covariates or of time scales, and spatial effects. We develop Bayesian count data models that can deal with these issues simultaneously and within a unified inferential approach. Models for overdispersed or zero‐inflated data are combined with semiparametrically structured additive predictors, resulting in a rich class of count data regression models. Inference is fully Bayesian and is carried out by computationally efficient MCMC techniques. Simulation studies investigate performance, in particular how well different model components can be identified. Applications to patent data and to data from a car insurance illustrate the potential and, to some extent, limitations of our approach. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Clinical HIV-1 data include many individual factors, such as compliance to treatment, pharmacokinetics, variability in respect to viral dynamics, race, sex, income, etc., which might directly influence or be associated with clinical outcome. These factors need to be taken into account to achieve a better understanding of clinical outcome and mathematical models can provide a unifying framework to do so. The first objective of this paper is to demonstrate the development of comprehensive HIV-1 dynamics models that describe viral dynamics and also incorporate different factors influencing such dynamics. The second objective of this paper is to describe alternative estimation methods that can be applied to the analysis of data with such models. In particular, we consider: (i) simple but effective two-stage estimation methods, in which data from each patient are analyzed separately and summary statistics derived from the results, (ii) more complex nonlinear mixed effect models, used to pool all the patient data in a single analysis. Bayesian estimation methods are also considered, in particular: (iii) maximum posterior approximations, MAP, and (iv) Markov chain Monte Carlo, MCMC. Bayesian methods incorporate prior knowledge into the models, thus avoiding some of the model simplifications introduced when the data are analyzed using two-stage methods, or a nonlinear mixed effect framework. We demonstrate the development of the models and the different estimation methods using real AIDS clinical trial data involving patients receiving multiple drugs regimens.  相似文献   

16.
In many applications involving spatial point patterns, we find evidence of inhibition or repulsion. The most commonly used class of models for such settings are the Gibbs point processes. A recent alternative, at least to the statistical community, is the determinantal point process. Here, we examine model fitting and inference for both of these classes of processes in a Bayesian framework. While usual MCMC model fitting can be available, the algorithms are complex and are not always well behaved. We propose using approximate Bayesian computation (ABC) for such fitting. This approach becomes attractive because, though likelihoods are very challenging to work with for these processes, generation of realizations given parameter values is relatively straightforward. As a result, the ABC fitting approach is well-suited for these models. In addition, such simulation makes them well-suited for posterior predictive inference as well as for model assessment. We provide details for all of the above along with some simulation investigation and an illustrative analysis of a point pattern of tree data exhibiting repulsion. R code and datasets are included in the supplementary material.  相似文献   

17.
Advances in computing power are allowing researchers to use Bayesian hierarchical models (BHM) on problems previously considered computationally infeasible. This article discusses the procedure of migrating a BHM from a workstation-class implementation to a massively parallel architecture, indicative of the current direction of advances in computing hardware. The parallel implementation is nearly 500 times larger than the workstation-class implementation from the data perspective. The BHM in question combines the information from a scatterometer on board a polar-orbiting satellite and the result of a numerical weather prediction model and produces an ensemble of high-resolution tropical surface wind fields with physically realistic variability at all spatial scales.  相似文献   

18.
Bayesian approaches to prediction and the assessment of predictive uncertainty in generalized linear models are often based on averaging predictions over different models, and this requires methods for accounting for model uncertainty. When there are linear dependencies among potential predictor variables in a generalized linear model, existing Markov chain Monte Carlo algorithms for sampling from the posterior distribution on the model and parameter space in Bayesian variable selection problems may not work well. This article describes a sampling algorithm based on the Swendsen-Wang algorithm for the Ising model, and which works well when the predictors are far from orthogonality. In problems of variable selection for generalized linear models we can index different models by a binary parameter vector, where each binary variable indicates whether or not a given predictor variable is included in the model. The posterior distribution on the model is a distribution on this collection of binary strings, and by thinking of this posterior distribution as a binary spatial field we apply a sampling scheme inspired by the Swendsen-Wang algorithm for the Ising model in order to sample from the model posterior distribution. The algorithm we describe extends a similar algorithm for variable selection problems in linear models. The benefits of the algorithm are demonstrated for both real and simulated data.  相似文献   

19.
The threshold autoregressive model with generalized autoregressive conditionally heteroskedastic (GARCH) specification is a popular nonlinear model that captures the well‐known asymmetric phenomena in financial market data. The switching mechanisms of hysteretic autoregressive GARCH models are different from threshold autoregressive model with GARCH as regime switching may be delayed when the hysteresis variable lies in a hysteresis zone. This paper conducts a Bayesian model comparison among competing models by designing an adaptive Markov chain Monte Carlo sampling scheme. We illustrate the performance of three kinds of criteria by comparing models with fat‐tailed and/or skewed errors: deviance information criteria, Bayesian predictive information, and an asymptotic version of Bayesian predictive information. A simulation study highlights the properties of the three Bayesian criteria and the accuracy as well as their favorable performance as model selection tools. We demonstrate the proposed method in an empirical study of 12 international stock markets, providing evidence to strongly support for both models with skew fat‐tailed innovations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Probabilistic Decision Graphs (PDGs) are a class of graphical models that can naturally encode some context specific independencies that cannot always be efficiently captured by other popular models, such as Bayesian Networks. Furthermore, inference can be carried out efficiently over a PDG, in time linear in the size of the model. The problem of learning PDGs from data has been studied in the literature, but only for the case of complete data. We propose an algorithm for learning PDGs in the presence of missing data. The proposed method is based on the Expectation-Maximisation principle for estimating the structure of the model as well as the parameters. We test our proposal on both artificially generated data with different rates of missing cells and real incomplete data. We also compare the PDG models learnt by our approach to the commonly used Bayesian Network (BN) model. The results indicate that the PDG model is less sensitive to the rate of missing data than BN model. Also, though the BN models usually attain higher likelihood, the PDGs are close to them also in size, which makes the learnt PDGs preferable for probabilistic inference purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号